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Abstract A novel similarity measure for bag-of-words type
large scale image retrieval is presented. The similarity func-
tion is learned in an unsupervised manner, requires no extra
space over the standard bag-of-words method and is more
discriminative than both L2-based soft assignment and Ham-
ming embedding.

The novel similarity function achieves mean average pre-
cision that is superior to any result published in the liter-
ature on the standard Oxford 5k, Oxford 105k and Paris
datasets/protocols.

We study the effect of a fine quantization and very large
vocabularies (up to 64 million words) and show that the per-
formance of specific object retrieval increases with the size
of the vocabulary. This observation is in contradiction with
previously published methods. We further demonstrate that
the large vocabularies increase the speed of the tf-idf scoring
step.

1 Introduction

Recently, large collections of images have become readily
available [Google Street View, , Panoramio, , Flickr, ] and
image-based search in such collections has attracted signifi-
cant attention of the computer vision community [Sivic and
Zisserman, 2003, Nister and Stewenius, 2006, Chum et al.,
2007, Jegou et al., 2008, Perdoch et al., 2009]. Most, if not
all, recent state-of-the-art methods extend the bag-of-words
representation introduced by Sivic and Zisserman [Sivic and
Zisserman, 2003] who represented the image by a histogram
of “visual words”, i.e., discretized SIFT descriptors [Lowe,
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2004]. The bag-of-words representation possesses many de-
sirable properties required in large scale retrieval. If imple-
mented as an inverted file, it is compact and supports fast
search. It is sufficiently discriminative and yet robust to ac-
quisition “nuisance parameters” like illumination and view-
point change as well as occlusion1.

Discretization of SIFT features is necessary in large scale
problems as it is neither possible to compute distances on
descriptors efficiently nor feasible to store all the descrip-
tors. Instead, only the identifier of the vector quantized pro-
totype for visual word is kept. After quantization, Euclidean
distance in a high (128) dimensional space is approximated
by a 0–∞ pseudo-metric – features represented by the same
visual word are deemed identical, while the others are treated
as “totally different”. The computational convenience of such
a crude approximation of the SIFT distance has a detrimen-
tal impact on discriminative power of the representation.
To relieve this problem, recent methods like soft assign-
ment [Philbin et al., 2008] and in particular the Hamming
embedding [Jégou et al., 2010] aim at obtaining a better
space-speed-accuracy trade off.

In this paper, unsupervised learning on a large set of
images is exploited to improve the 0–∞ metric. First, an
efficient clustering process with spatial verification estab-
lishes correspondences within a large (>5M) image collec-
tion. Next, a fine-grained vocabulary is obtained by 2-level
hierarchical approximate nearest neighbour clustering. The
automatically established correspondences are then used to
define a similarity measure on the basis of a probabilistic
relationships of visual words; we call it the PR visual word
similarity.

1 We only consider and compare with methods that support queries
that cover only a (small) part of the test image. Global methods like
GIST [Oliva and Torralba, 2006] achieve a much smaller memory foot-
print at the cost of allowing whole image queries only.

$ The authors were supported by the GACR P103/12/2310 project.
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Fig. 1 Examples of “tracks”, i.e., of corresponding patches. (a) A 2D PCA projection of their SIFT descriptors; (b) two most distant patches in
the SIFT space and (c) the images where they were detected; (d) a set of sample patches. The average SIFT distance within the cluster is 278, the
maximal distance is 591. For a comparison, an average distance of two randomly selected SIFT descriptors is 540. Two other examples of tracks
where (e) enormous change of viewpoint caused that the maximal SIFT distance inside track is 542 and (f) 593 respectively, where change in scale
is also present.
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When combined with a large vocabulary, several mil-
lions of words (one or two orders of magnitude larger than
commonly used), the PR similarity has the following desir-
able properties:

(i) it is more accurate (discriminative), than both standard
0–∞ metric and Hamming embedding.

(ii) the memory footprint of the image representation for PR
similarity calculation is roughly identical to the standard
method and smaller than that of Hamming embedding.

(iii) search with the PR similarity is faster than the standard
bag-of-words.

As a main contribution of the paper, we present a novel
similarity measure that is learned in an unsupervised man-
ner, requires only negligible extra space (only O(1)) in com-
parison with the bag-of-words and is more discriminative
than both 0–∞ and L2-based soft assignment.

Further, we experimentally disprove the common assump-
tion which is present in community that is not worth to build
vocabularies larger than 1M. To construct a well performing
large vocabulary, we propose to build shallow hierarchical –
tree based – vocabularies with adaptive branching to speed
up the process but not to bring the disadvantage of big im-
balance factor of deeper ones.

A preliminary version of this paper [Mikulik et al., 2010]
appeared in European Conference on Computer Vision 2010.

2 Related Work

In this section, approaches to vocabulary construction and
soft assignment suitable for large-scale image search are re-
viewed and compared.

In [Sivic and Zisserman, 2003], the first ‘bag of words’
approach to image retrieval was introduced. The vocabulary
(with the number of visual words ≈ 104) is constructed us-
ing a standard k-means algorithm. Adopting methodology
from text retrieval applications, the image score is efficiently
computed by traversing inverted files related to visual words
present in the query. The inverted file related to a visual word
W is a list of image ids that contain the visual word W . It
follows that the time required for scoring the documents is
proportional to the number different visual words in a query
and the average length of an inverted file.
Hierarchical clustering. The hierarchical k-means and scor-
ing of Nistér and Stewenius [Nister and Stewenius, 2006]
is the first image retrieval approach that scales up. The vo-
cabulary has a hierarchical structure which allows efficient
construction of large and discriminative vocabularies. The
quantization effect are alleviated by the so called hierarchi-
cal scoring. In such a type of scoring, the scoring visual
words are not only stored in the leafs of the vocabulary tree.
The non-leaf nodes can be thought of as virtual or generic
visual words. These virtual words naturally score with lower

(a) (b)

(c) (d)

Fig. 2 Different approaches to soft assignment (saturation encodes the
relevance): (a) hierarchical scoring [Nister and Stewenius, 2006] – the
soft assignment is given by the hierarchical structure of the assignment
tree; (b) soft clustering [Philbin et al., 2008] assigns features to r near-
est cluster centers; (c) hamming embedding [Jégou et al., 2010] – each
cell is divided into orthants by a number of hyperplanes, the distance
of the orthants is measured by the number of separating hyperplanes;
(d) the set of alternative words in the proposed PR similarity measure.

idf weights as more features are assigned to them (all fea-
tures in their sub-tree).

The advantage of the hierarchical scoring approach is
that the soft assignment is given by the structure of the tree
and no additional information needs to be stored for each
feature. On the downside, experiments in [Philbin et al., 2008]
show that the quantization artefacts of the hierarchical k-
means are not fully removed by hierarchical scoring, the
problems are only shifted up a few levels in the hierarchy.
An illustrative example of the soft assignment performed by
the hierarchical clustering is shown in Fig. 2(a).
Soft assignment. In [Philbin et al., 2008], an approximate
soft assignment is exploited. Each feature is assigned to n =

3 (approximately) nearest visual words. Each assignment is

weighted by e−
d2

2σ2 where d is the distance of the feature
descriptor to the cluster center.

The soft assignment is performed on features in the database
as well as the query features. This results in n times higher
memory requirements and n2 times longer running time –
the average length of the inverted file is n times longer and
there are up to n times more visual words associated with
the query features. For an illustration of the soft assignment,
see Fig. 2(b).
Hamming embedding. Jégou et al. [Jégou et al., 2010] pro-
posed to combine k-means quantization and binary vector
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signatures. First, the feature space is divided into relatively
small number of Voronoi cells (20K) using k-means. Each
cell is then divided by n axis-parallel hyper-planes into 2n

subcells. Each subcell is described by a binary vector of
length n. Results reported in [Jégou et al., 2010] suggest
that the Hamming embedding provides good quantization.
However, the good results are traded off for higher running
time requirements and high memory requirements.

The higher running time requirements are caused by the
use of coarse quantization in the first step. The average length
of an inverted file for vocabulary of 20K words is 50 times
longer than the one of 1M words. Recall that the time re-
quired to traverse the inverted files is given by the length of
the inverted file. Hence 50 times smaller vocabulary results
in approximately 50 times longer scoring time on average.
Even if two query features are assigned to the same visual
word, the relevant inverted file has to be processed for each
of the features separately as they will have different binary
signatures.

While the reported bits per feature required in the search
index ranges from 11 bits [Perdoch et al., 2009] to 18 bits
[Philbin et al., 2008], hamming embedding adds another 64
bits. The additional information reduces the number of fea-
tures that can be stored in the memory by a factor of 6.8.
Gaussian Mixture Model (GMM). Learned with expectation-
maximization (EM) algorithm [Duda et al., 1995], GMM
is seen as generalization of k-means clustering [Perronnin,
2008]. While standard approach does not allow a large num-
ber of clusters due to slow convergence Approximate Gaus-
sian Mixture (AGM) [Avrithis and Kalantidis, 2012] uses
approximate nearest neighbor search to constrain the num-
ber of clusters, which interacts with a point. This enables
clustering into 106 clusters and provides a natural way for
soft assignment on both query and vocabulary side. Another
advantages are is that AGM dynamically estimates the num-
ber of clusters.

While [Avrithis and Kalantidis, 2012] reports better re-
sults on vocabularies with up to 1M visual words, it does
not exceed recall and precision of our system on compared
standard dataset.
Summary All approaches to soft clustering mentioned above
are based on the distance (or its approximation) in the de-
scriptor (SIFT) space. It has been observed that the Euclid-
ian distance is not the best performing measure. Learning a
global Mahalanobis distance [Hua et al., 2007, Mikolajczyk
and Matas, 2007] showed that the matching is improved and
/ or the dimensionality of the descriptor is reduced. How-
ever, even in the original work on SIFT descriptor match-
ing [Lowe, 2004] it is shown that the similarity of the de-
scriptors is not only dependent on the distance of the de-
scriptors, but also on the location of the features in the fea-
ture space. Therefore, learning a global Mahalanobis metric
is suboptimal and a local similarity measure is required. Ex-

amples of corresponding patches where SIFT distance does
not predict well the similarity are depicted in Figure 1.

Similar approach [Makadia, 2010] to ours was published
at the same conference as the preliminary version of this pa-
per. In this work Makadia used simpler, symmetrical similar-
ity measure, which together with much smaller training set
yielded inferior results to ours. A complementary approach
to identify alternative words was proposed in [Tang et al.,
2011], where authors observed that visual words represent-
ing the same semantic meaning, tend to have similar visual
contextual distributions.

3 The Probabilistic Relation Similarity Measure

Consider a feature in the query image with descriptor D ∈
D ⊂ Rd. For most accurate matching, the query feature
should be compared to all features in the database. The con-
tribution of the query feature to the matching score should be
proportional to the probability of matching the database fea-
ture. It is far too slow, i.e., practically not feasible, to directly
match a query feature to all features in a (large) database.
Also, the contribution of features with low probability of
matching is negligible.

The success of fast retrieval approaches is based on effi-
cient separation of (potentially) matching features from those
that are highly unlikely to match. The elimination is based
on a simple idea – the descriptors of matching patches will
be close in some appropriate metric (L2 is often used). With
appropriate data structures, enumeration of descriptors in
proximity is possible in time sub-linear in the size of the
database. All bag-of-words based methods use partition {wi}
of the descriptor spaceD:

⋃
wi = D, wi∩wj 6=i = ∅. The

cells are then used to separate features that are close (poten-
tially matching) from those that are far (non-matching).

In the case of hard assignment, features are associated
with the visual words defined by the closest cluster center. In
the scoring that evaluates query and database image match,
only features with the same visual word as the query feature
are considered.

We argue that the descriptor distance is a good indicator
of patch similarity only up to a limited distance, where the
variation in the descriptors is caused mostly the imaging and
detector noise. We abandon the assumption that the descrip-
tor distance provides a good similarity measure of patches
observed under different viewing angles or under different
illumination conditions. Instead, we propose to estimate the
probability between a feature observed in the query image
and a database feature. Since our aim is to address retrieval
in web-scale databases where store requirements are critical,
we constrained our attention to solution that have a minimal
overhead in comparison with the standard inverted file rep-
resentation.
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The proposed approach. We propose to use a fine partition
of the descriptor space, to minimize a probability of false
match inside a single cell. Even though the fine partition
is learned in a data dependent fashion (as in the other ap-
proaches), the fine partition unavoidable separates matching
features into a number of cells.

For each cell (visual word) we learn which other cells
(called alternative visual words) are likely to contain de-
scriptors of matching patches with the same pre-images. This
step consist of estimating the probability of observing visual
word wj in a matching database image when visual word wq

was observed in the query image

P (wj |wq). (1)

The probability (1) is estimated from a large number of match-
ing patches.

A simple generative model, independent for each fea-
ture, is adopted. In the model, image features are assumed
to be (locally affine) projections of a (locally close to pla-
nar) 3D surface patches zi. Hence, matching features among
different images are those that have the same pre-image zi.
To estimate the probability P (wj |wq) we start with (a large
number of) sets of matching features, each set being dif-
ferent projections of a patch zi. Using the fine vocabulary
(partition) the sets of matching features are converted to
sets of matching visual words. We estimate the probability
P (wj |wq) as

P (wj |wq) ≈
∑
Z

P (wj |zi)P (zi|wq). (2)

For each visual word wq , a fixed number of alternative
visual words that have the highest conditional probability
(eqn. 2) is recorded.

4 Learning a PR similarity

The first step of our approach is to obtain a large number of
matching image patches. The links between matching patches
are consequently used to infer relationship, between quan-
tized descriptors of those patches, i.e., between visual words.
As a first step towards unsupervised collection of matching
image patches, called “feature tracks”, clusters of matching
images are discovered. Within each cluster, feature tracks
are found by a wide-baseline matching method. This ap-
proach is similar to [Agarwal et al., 2009], where the feature
tracks are used to produce 3D reconstruction. In our case, it
is important to find larger variety of patch appearances than
precise point locations. Therefore, we adopt a slightly dif-
ferent approach to the choice of image pairs investigated.

4.1 Image clusters

We start with analyzing connected components of the im-
age matching graph (graph with images as vertices, edges
connect images that can be matched) produced by a large-
scale clustering method [Chum and Matas, 2010, Li et al.,
2008]. Any matching technique is suitable provided it can
find clusters of matching images in a very large database. In
our case, an image retrieval system was used to produce the
clusters of spatially related images. The following structure
of image clusters is created. Each cluster of spatially related
images is represented as an oriented tree structure (the skele-
ton of the cluster). The children of each parental node were
obtained as results of an image retrieval using the parent im-
age as a query image. Retrieved images, which are already
in the cluster, are ignored. Together with the tree structure,
an affine transformation (approximately) mapping child im-
age to its parent are recorded. These mappings are later used
to guide (speed-up) the matching.

4.2 Feature tracks

To avoid any kind of bias (by quantization errors, for ex-
ample), instead of using vector quantized form of the de-
scriptors, the conventional image matching (based on the
full SIFT [Lowe, 2004]) has to be used. In principle, one
can go back even to the pixel level [Ferrari et al., 2004,Cech
et al., 2008], however such an approach seems to be imprac-
tical for large volumes of data.

It is not feasible to match all pairs of images in the im-
age clusters, especially not of clusters with large number of
images (say more than 1000). It is also not possible to sim-
ply follow the tree structure of image clusters because not all
features are detected in all images (in fact, only a relatively
small portion of features is actually repeated). The follow-
ing procedure, that is linear in the number of images in the
cluster, is adopted for detection of feature tracks that would
exhibit as large variety of patch appearances as possible. For
each parental node, a sub-tree of height two is selected. On
images in the sub-tree, a 2k-connected graph called circu-
lant graph [Godsil and Royle, 2001] is constructed. Vertices
of a graph are ordered and connected with K steps of the
length random chosen between 1 and b(N − 1)/2c but al-
ways including step 1, to force connectivity. (i.e.. for chosen
step 4, the edges are created between vertices vi, vj ∈ V ,
where i− j modN = 4). The algorithm for construction of
minimal 2k-connected graph is summarized in Algorithm 1.

Images connected by an edge in such a graph are then
matched using standard wide-baseline matching. Since each
image in the image cluster participates in at most 3 sub-trees
(as father, son and grand-son), the number of edges is lim-
ited to 6kN , where N is the size of the cluster. Instead of us-
ing epipolar geometry as a global model, a number of close-
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to-planar (geometrically consistent) structures is estimated
(using affine homography). Unlike the epipolar constraint,
such a one-to-one mapping enables to verify the shape of
the feature patch. Connected components of matching and
geometrically consistent features are called feature tracks.

Tracks that contain two different features from a single
image are called inconsistent [Agarwal et al., 2009]. These
features clearly cannot have a single pre-image under per-
spective projection and hence cannot be used in the pro-
cess of 3D reconstruction. Such inconsistent tracks are of-
ten caused by repeated patterns. Inconsistent feature tracks
are (unlike in [Agarwal et al., 2009]) kept as they provide
further examples of patch appearance.

Input: K - requested connectivity, N - number of vertices
Output: V a set of vertices, E ⊂ V × V a set of edges of
2K connected graph (V,E).

1. if 2K ≥ N − 1 then
return fully connected graph with N vertices.

end
2. S := {1}

⋃
a random subset of {2, . . . , bN−1

2
c},|S| = K

3. V := {v0, . . . , vN−1}
4. E := {(vi, vj) | vi, vj ∈ V, i− j mod N ∈ S}

Algorithm 1: Construction of the 2K connected graph with
a minimal number of edges as a union of circulants.

4.3 Computing the conditional probability.

To compute the conditional probability (eqn. 2) from the fea-
ture tracks, an inverted file structure is used. The tracks are
represented as forward files (named zi), i.e., lists of match-
ing SIFT descriptors. The descriptors are assigned to their
visual word from the large vocabulary. Then, for each visual
word wk, a list of patches zi so that P (zi|wk) > 0 (the in-
verted file) is constructed. The sum (eqn. 2) is evaluated by
traversing the relevant inverted file.

4.4 Statistics.

Over 5 million images were processed using geometric min-
hash technique [Chum et al., 2009]. Almost 20,000 clus-
ters containing 750,000 images were found. Out of those
733,000 were successfully matched in the wide-baseline match-
ing stage. Over 111 million of feature tracks were estab-
lished, out of which 12.3 millions are composed of more
than 5 features. In total, 564 million features participated in
the tracks, 319.5 million features belong to tracks of more
than 5 features. Some examples of feature tracks are shown
in Figures 6 and 7. Only negligible portion of visual words
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Fig. 3 The distribution of visual words over tracks in 1M and 16M
vocabulary. Only negligible part of the visual words were not present
in any feature track.

were not present in any feature track. There was 2 such
words in the 1M vocabulary and 74005 (0.4%) in 16M vo-
cabulary. The distribution of visual words over tracks in these
vocabularies are shown in Figure 3.

4.5 Memory and time efficiency.

For the alternative words storage, only constant space is re-
quired, equal to the size of the vocabulary times the num-
ber of alternative words. The pre-processing consists of im-
age clustering ( [Chum and Matas, 2010] reports near lin-
ear time in the size of the database), intra-cluster matching
(linearity enforced by the 2k-connected circulant matching
graph), and of the evaluation of expression eqn. (2) for all
visual words. The worst case complexity of the last step is
equal to the number of tracks (correspondences) times size
of the vocabulary squared. In practice, due to the sparsity of
the representation, the process took less than an hour in our
settings for over 5 million images.

5 Large Vocabulary Generation

To efficiently generate a large visual vocabulary we employ
a hybrid approach – approximate hierarchical k-means. A
hierarchy tree of two levels is constructed. For instance, for
vocabulary of 16M words, each level has 4K nodes on av-
erage. In the assignment stage of k-means, an approximate
nearest neighbour, FLANN [Muja and Lowe, 2009], is used
for efficiency reasons.

First, a level one approximate k-means is applied to a
random sub-sample of 5 million SIFT descriptors. Then, a
two pass procedure on ≈ 11 billion SIFTs (from almost 6
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million images) is performed. In the first pass, each SIFT
descriptor is assigned to a word in the level one of a vo-
cabulary. For each visual word in the first level a list of de-
scriptors assigned to it is recorded. In the second pass, ap-
proximate k-means on each list of the descriptors is applied.
The whole procedure takes about one day on a cluster of 20
computers.

5.1 Balancing the tree structure.

For the average speed of the retrieval, it is important that
the vocabulary is balanced, i.e., there are approximately the
same number of instances of each visual word in the database.

We compared unbalanced and balanced vocabulary con-
structions (Figure 4). In the balanced construction, the sec-
ond level of the vocabulary uses an adaptive branching fac-
tor, which is proportional to the weight of the branch (i.e.
cluster A with 2 times more features than cluster B will be
split into two times more clusters in the second level of hi-
erarchy than cluster B). We also explored the balancing on
the first level by constraining the length of the mean vectors
(this stems from the fact that SIFT features live approxi-
mately on a hyper-sphere), which is similar to the method
[Tavenard and Amsaleg, 2010]. As the latter method has
not brought better results while implied higher computation
costs, it was not explored further.

In our experiments, a balanced vocabulary with adaptive
branching factor at the second level is used. With such a con-
struction we reached an imbalance factor [Jégou et al., 2010]
of 1.09 for the training image set (>5M images) (compared
to 1.21 in [Jégou et al., 2010]) and 1.26 for the testing set
– Oxford 105k. Fraundorfer et al. [Fraundorfer et al., 2007]
report estimate of imbalance factor 5 for hierarchical trees
introduced in [Nister and Stewenius, 2006]. The experiment
shows that the balancing does not significantly affect mAP.
The advantage is the gain in query speed.

Comparison of the imbalance factors of our balanced
and unbalanced vocabulary is show in Table 1.

5.2 Size of the vocabulary.

There are different opinions about the number of visual words
in the vocabulary for image retrieval. Philbin et. al. in [Philbin
et al., 2007] achieved the best mAP for object recognition
with a vocabulary of 1M visual words and predict a per-
formance drop for larger vocabularies. We attribute the re-
sult in [Philbin et al., 2007] to a too small training dataset
(16.7M descriptors). In our case the vocabularies with up to
64M words is built using 11G training descriptors. Experi-
ments show that the larger the vocabulary is, the better per-
formance is achieved, even for plain bag-of-words retrieval.
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Fig. 4 A comparison of the mean average precision (mAP) for an un-
balanced and balanced 16M vocabulary (a) with and (b) without the
query expansion. The experiment shows that the balancing does not
significantly affect mAP (the advantage is the gain in query speed).
The error bars are shown where three vocabularies with different ran-
dom initialization were evaluated.

Introducing the alternative words, the situation is changed
even more rapidly and, as expected, they are more useful for
larger vocabularies (Figure 5). We have not built vocabular-
ies larger than 64M because the memory footprint of the as-
signment tree started to be impractical and the performance
has almost converged.

6 Experiments

The implementation of the retrieval stage is fairly standard,
using inverted files [Sivic and Zisserman, 2003] for candi-
date image selection which is followed by fast spatial verifi-
cation and query expansion [Chum et al., 2007]. The modi-
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method of the vocab. construction imbalance factor level 1 imbalance factor level 2
training set testing set training set testing set

unbalanced 1.028 1.097 1.122 1.311
balanced 1.028 1.097 1.093 1.259

Table 1 Comparison of the imbalance factor [Jégou et al., 2010] of the unbalanced and balanced version of the two level hierarchical vocabulary.
Adaptive branching factor was used at the second level of the tree hierarchy to balance the vocabulary.
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Fig. 5 Comparison of mAP for the balanced vocabularies of from 1 to
64 millions visual words. Solid lines show results after the query ex-
pansion (QE), dashed lines without QE. Red lines show results using
plain bag-of-words (without alternative words). The number of alter-
native words is proportional to vocabulary size to compare results of
equal time complexity. This way, approximately the same amount of
entries of the inverted file is traversed (e.g. since the average length of
a list of an inverted file for 16M vocabulary is 16 times smaller than for
1M vocabulary, 16 lists with alternative words can be crawled within
the same time). To clarify the plot: (a) the result of 16M vocabulary
with (L16) 16 linked words (1 original and 15 alternatives) and with-
out QE. (b) 32M vocabulary (L1) without alternative words with QE,
and finally (c) 4M vocabulary (L8) 8 linked words with QE.

fications listed below are the major differences implemented
in our retrieval stage.
Unique matching. Despite being assigned to more than one
visual word, each query feature is a projection of a single
physical patch. Thus it can match only at most one feature
in each image in the database. We find that applying this
uniqueness constraint adds negligible computational cost and
improves the results by approximately 1%. The order in which
are the alternative words traversed and matched in an in-
verted file is given by their probability of being an alterna-
tive word (2).
Weights of alternative words. Contribution of each visual
word is weighted by the idf weight [Baeza-Yates and Ribeiro-
Neto, 1999]. A number of re-weighting schemes for alterna-
tive words have been tried, none of them affecting signifi-
cantly the results of the retrieval.
Datasets. We have extensively evaluated the performance
of the PR similarity on a standard retrieval datasets Ox-
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Fig. 8 The quality of the retrieval, expressed as the mean average pre-
cision (mAP), increases with the number of alternative words. The
mAP after (upper curve) and before (lower curve) query expansion is
shown.

ford 105K and Oxford 5K2, INRIA Holidays3, PARIS4 and
PARIS combined with 100.000 distractor images from Ox-
ford 105K dataset (Paris + Oxford 100K). The experiments
focus on retrieval accuracy and the retrieval speed. Since
our training set of 6 million images were downloaded from
FLICKR in a similar way as the testing datasets Oxford and
PARIS, we have explicitly removed all testing images (or
their scaled duplicates) from the training set.

6.1 Retrieval quality

We follow the protocols of testing datasets defined in [Philbin
et al., 2007] and use the mean average precision as a measure
of retrieval performance. We start by studying the properties
of the PR similarity for a visual vocabularies of 1, 4, 8, 16,
32 and 64 million words.

In the first experiment, the quality of the retrieval as a
function of the number of alternative words is measured, see
Figure 8. The plots show that performance improves for vi-
sual vocabularies of all tested sizes monotonically for plain
retrieval without query expansion and almost monotonically
when query expansion is used.

2 http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/
3 http://lear.inrialpes.fr/∼jegou/data.php
4 http://www.robots.ox.ac.uk/∼vgg/data/parisbuildings/
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Fig. 6 Three examples of feature tracks of size 50. Five selected images (top row) and all 50 patches of the track. Even though the patches are
similar, the SIFT distance of some pairs is over 500.
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Fig. 7 Three examples of feature tracks of size 20. Images (first two rows) and corresponding patches (third row). Note the variation in appearance
of the patches.

The second experiment studies the effects of the vocab-
ulary size (Figure 5), and compares the alternative words in
the PR similarity with the euclidean nearest neighbours in
soft assignment. The left-hand part of Table 2 shows results
obtained with the 16M vocabulary with three different set-
tings ‘L1’ – standard tf-idf retrieval with hard assignment
of visual words; ‘L5’ and ‘L16’ – retrieval using alternative
words (4 and 15 respectively). The righthand part presents
results of reference state-of-the-art results [Perdoch et al.,
2009] obtain with a vocabulary of 1M visual words learned
on the PARIS dataset. Two version of the reference algo-

rithm are tested, without (‘L1’) and with the query soft as-
signment to 3 nearest neighbours (‘SA 3NN’).
The experiments support the following observations:

(i) PR similarity calculation with using the learned alter-
native words increases significantly the accuracy of the
retrieval, both with and without query expansion.

(ii) Alternative words are more useful for larger vocabular-
ies

(iii) The PR similarity outperforms soft SA in term of preci-
sions, yet does not share the drawbacks of SA.
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16M L1 16M L5 16M L16 PARIS 1M L1
Oxford 105K 0.071 0.114 0.195 0.247

Table 3 Average execution time per query in sec for selected vocabu-
laries on Oxford 105k dataset. The proposed 16M vocabulary is com-
pared with the state-of-the-art method [Perdoch et al., 2009].

1 5 8 12 16 20 24 28 32
0

0.1

0.2

0.3

0.4

Fig. 9 The dependence of the query time on the number of linked
words for Oxford 105k dataset and 16M vocabulary.

(iv) The PR similarity outperforms the Hamming embedding
approach combined with query expansion, Jegou et al.
[Jégou et al., 2009,Jégou et al., 2010] report the mAP of
0.692 on this dataset.

(v) The mAP result for 16M L16 is superior to any result
published in the literature on the Oxford 105k dataset.

(vi) Balancing by uneven splitting of the second layer dis-
card drawbacks of growing imbalance factor for hierar-
chical vocabularies. We predict that this approach will
be even more significant for deeper vocabularies.

6.2 Query times

To compare the speed of the retrieval, an average query time
over the 55 queries defined on the Oxford 105K data set
was measured. Running times recorded for the same meth-
ods and parameter settings as above are shown in Table 3.

The plot showing dependency of the query time on the
number of alternative words is depicted in Figure 9. The
time for the reference PARIS 1M std method and the 16M
L16 are of the same order. This is expected since the average
length of inverted files is of the same order for both methods.
The proposed method is about 20% faster, but this might be
just an implementation artefact.

We looked at the dependence of the speed of the pro-
posed method as a function of the number alternative words.
The relationship shown in Fig. 9 is very close to linear plus
a fixed overhead. The plot demonstrates that speed-accuracy
trade-off is controllable via the number of alternative words.

Finally, the average query time for plain bag-of-words
(no alternative words) as a function of the dictionary size
was evaluated. To measure directly the speed of traversing
the inverted file, the query time without the spatial verifica-
tion is measured. Results are shown in Figure 10.
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Fig. 10 The dependence of the query time on the vocabulary size. The
times were measured on the Oxford 105k dataset. To measure the speed
of inverted file, we are not using spatial verification, alternative words,
or query expansion. The green line shows times measured without sort-
ing the documents according the score and copying them to the output.

6.3 Results on other datasets

The proposed approach has been tested on a number of stan-
dard datasets. These include Oxford, INRIA holidays 5, and
Paris datasets. In all cases (Table 4), the use of the alterna-
tive visual words improves the results. On all datasets except
the INRIA holidays the method achieves the state-of-the-art
results.

The proposed method is designed and trained to improve
retrieval of specific object by better matching of features that
are projections of identical physical scene patch. In the IN-
RIA dataset, it is known that many queries rely on retrieving
similar content rather than on exact feature matching. We
consider this property of the dataset to be the reason for rel-
atively small increase in the performance by our method.

7 Conclusions

We presented a novel similarity measure for bag-of-words
type large scale image retrieval. The similarity function is
learned in an unsupervised manner using geometrically ver-
ified correspondences obtained with an efficient clustering
method on a large image collection.

5 The Holidays dataset presented in [Jegou et al., 2008] contains
about 5%-10% of the images rotated unnaturally for a human observer.
Because the rotational variant feature descriptor was used in our ex-
periment, we report the performance on a version of the dataset, with
corrected orientation of the images according to EXIF, or manually
(by 90◦, 180◦ or 270◦), where the EXIF information is missing and
the correct (sky-is-up) orientation is obvious.
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16M L1 16M L5 16M L16 PARIS 1M L1 PARIS 1M SA 3NN
plain 0.554 0.650 0.674 0.574 0.652
QE 0.695 0.786 0.795 0.728 0.772

Table 2 The mean average precision for the 16M vocabulary on the Oxford 105k dataset is compared with the previous stat-of-the-art 1M
vocabulary learned on Paris dataset [Perdoch et al., 2009]. Setups with hard assignment (L1), 4 alternative words (L5), 15 alternative words (L16)
and soft-assignment with 3 nearest neighbours (SA 3NN) were considered. Results without (plain) and with query expansion (QE) are shown.

Dataset 16M L1 16M L16 16M QE 16M L16 QE
Oxford 5k 0.618 0.742 0.740 0.849

Oxford 105K 0.554 0.674 0.695 0.795
Paris 0.625 0.749 0.736 0.824

Paris + Oxford 100k 0.533 0.675 0.659 0.773
INRIA holidays rot 0.742 0.749 0.755 0.758

Table 4 Results of the proposed method on a number of publicly available datasets for a vocabulary with 16 millions visual words. Four setups
are compared: (L16) with 15 alternative words, (L1) without alternative words, with and without (QE) query expansion. (The result for the Oxford
105K is duplicated for completeness.)

The similarity measure requires only negligible extra space
in comparison with the standard bag-of-words method. Ex-
perimentally we show that the novel similarity function achieves
mean average precision that is superior to any result pub-
lished in the literature on the standard Oxford 5k, Oxford
105k and Paris datasets/protocols. At the same time, retrieval
with the proposed similarity function is faster than the refer-
ence method.

We showed that using 2 layer hierarchical approach en-
ables to build a large vocabulary, which performs better and
faster and proposes the simple balancing method, which helps
to keep imbalance factor low.

As a secondary contribution we make available the database
of matching SIFT features, together with the source code of
the feature detector (Hessian affine) and descriptor used to
extract and describe the features [Project page, 2012].
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