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Abstract—We propose a novel method for the refinement
of Maximally Stable Extremal Region (MSER) boundaries to
sub-pixel precision by taking into account the intensity function
in the 2×2 neighborhood of the contour points. The proposed
method improves the repeatability and precision of Local Affine
Frames (LAFs) constructed on extremal regions. Additionally,
we propose a novel method for detection of local curvature
extrema on the refined contour.

Experimental evaluation on publicly available datasets shows
that matching with the modified LAFs leads to a higher number
of correspondences and a higher inlier ratio in more than 80%
of the test image pairs. Since the processing time of the contour
refinement is negligible, there is no reason not to include the
algorithms as a standard part of the MSER detector and LAF
constructions.

Keywords-discretized contour, contour refinement, curvature
estimation, curvature extrema

I. INTRODUCTION

The Maximally Stable Extremal Region (MSER) detector
[1] has been shown to be a reliable state-of-the-art region
detector [2]. The detected regions have high repeatability,
they are robust to photometric transformations and viewpoint
changes and in many types of scenes outperforms other
affine covariant region detectors [2].

Since the boundary of an MSER region is defined by a set
of pixels, the contour is affected by rasterization. We propose
a novel method to the refinement of the discretized contour
based on the gradient of image intensity. The key idea is to
exploit the fact that the boundary of MSER is a discretized
isophote of a smooth intensity function, thus the local
gradient is assumed to be constant. The method estimates
subpixel position of the isophote examining pixel values in
the local neighborhood of the contour. The refined contour
facilitates improvement in detection of contours primitives
like the inflection point or curvature extrema. In contrast,
reference approaches [3] and [4] use curvature scale-space
to suppress discretization noise. The main drawback of the
reference method is the loss of the precision (see Figure 1
– green line).

Local Affine Frames (LAFs) [5] define measurement
regions [1] on affine covariant primitives extracted from
detected regions. The frames, consisting of ordered triplets
of points, are more useful than affine covariant regions
as they directly facilitate affine invariant description of

Figure 1. A comparison of three region boundaries. White — the original
MSER boundary, Green — smoothed with the Gaussian filter [3], Red —
contour refinement (the proposed approach)

the image signal without any further processing such as
detection of dominant gradient directions.

Discretization effects on the original MSER boundary
negatively influence the precision of the created LAFs. The
goal of this work is to show that a simple refinement of
the contour and thus more precise localization of affine
covariant primitives leads to a higher repeatability of LAF
constructions and improves recognition performance.

An experimental evaluation was conducted on two pub-
licly available datasets (ZuBuD [6] and Mikolajczyk’s [2])
to show the performance of the proposed method in real
applications. In the evaluation, we focused on two aspects,
wide-baseline matching performance and geometric preci-
sion.

The rest of the paper is structured as follows. An overview
of the reference method with the proposed aproaches are
described in Section II. Experimental validation follows in
Section III and the paper is concluded in Section IV.

II. PRECISE LAF CONSTRUCTION ON THE REFINED
MSER CONTOUR

A local affine frame (LAF) [3] is a coordinate system con-
structed by combining affine-covariant primitives detected
on an MSER which constrains all six degrees of freedom
of an affine transformation. A local patch around a LAF
is normalized to a canonical coordinate system and finally
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Figure 2. LAF construction on MSER contour.
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Figure 3. Discretization effects on an MSER region. (a) Input image for
the MSER detector. (b) The same image, with 10 times higher resolution
used as ground truth. (c) The detected MSER on the high-resolution image.
(d) The detected MSER (blue line) on input image and the “ground truth”
projected from the high-resolution image. (e) White line - contour refined
by the proposed method. (f) Close-ups.

a descriptor (e.g. SIFT) is computed (see Figure 2). The
affine covariant primitives constructed on MSER contour
are, e.g., local curvature extrema, inflection points, or center
of gravity. Localization of the primitives, especially on
smaller regions, is severely affected by image rasterization
(see Figure 3).

MSERs are returned by the detector as 4-connected
sets of image pixels. The outer contour of the region
C = (a1,a2, ...,an),ai ∈ R2 is a Jordan curve through
the corners of image pixels ai = (x, y), ∀i : ‖ai −
a(i mod n)+1‖ = 1. Contours around holes in the MSERs
are treated separately and in the same way as the outer
contours. In the reference methods [4] and [3], the contour
is smoothed with a Gaussian filter to avoid discretization
effects:

a′i =

∑
t atG0,σ(d(ai − at))∑
tG0,σ(d(ai − at))

, (1)

a b

dc

Figure 4. Shifting the vertex on the original
contour (yellow cross) to a new position (green)
based on the intensity of pixels a,b,c,d. Red line
– gradient direction, green line – the isophote,
blue line – the original contour.

where a′i is position of contour vertex i, d(ai,at) is the
distance along contour between vertexes i and t, and G0,σ(•)
is a Gaussian PDF with zero mean and standard deviation
σ. To preserve scale invariance of the construction, σ must
be proportional to the square root of the region area:

σ = max (
√
|Ω|/k, 1), (2)

where |Ω| is size of the region (number of region pixels),
and k is parameter controlling the smoothing. This step is
not affine covariant but is fast and sufficiently suppresses
the rasterization effect and it had a positive impact on the
recognition rate in the object recognition experiment [3].

The main problem of the reference method is the choice
of the level of smoothing (setting of the parameter k) a trade-
off between preserving local structures and suppression of
rasterization effects. To avoid this trade-off we propose a
novel method for contour refinement. Instead of warping the
outer contour around pixels with the intensity at or above
the intensity threshold (as done in standard MSER), the
proposed method shifts the location of contour point to the
estimated location of the isophote exactly at the intensity
threshold. The desired output of the new contour refinement
algorithm is contour C ′ with following properties:
• C ′ = (a′1,a

′
2, ...,a

′
n), ai ∈ R2,

• ∀i : ‖ai − a′i‖∞ < 0.5, where ‖•‖∞ denotes L∞
norm,

• C ′ is Jordan curve,
• |C ′| = |C| .
In order to estimate the isophote, the intensity function in

four neighboring pixels of each contour vertex is examined
(see Figure 4). The only assumption is a constant gradient in
a small neighborhood. First, a gradient of intensity function
is estimated using Roberts operator for each vertex. This is

Algorithm 1 Subpixel refinement

Input: region contour C = (a1,a2, ...,an), image I , intensity threshold t
Output: refined contour C′ = (a′1,a

′
1, ...,a

′
n)

For each contour vertex a ∈ C estimate refined position a′ ∈ C′ in the
following way:

1) Approximate the gradient ∇I(a)
(
∂I(a)
∂x

,
∂I(a)
∂y

)
of the image

intensity function from four neighboring pixels p1, . . . , p4 of
vertex a using Roberts operator [7].

2) Project center points of pixels p1, . . . , p4 to p′1, . . . p
′
4 with or-

thogonal projection to line passing through vertex a in the gradient
direction.

3) Estimate the new position a′ of the vertex a for threshold t by
linear regression. The regressors are pixel intensities I(pi), and
yi = ‖p′i − a‖ are the regressands.
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Figure 5. (a) Curvature estimation. (b) Curvature computed for two different values of a, a = 0.5 (blue line) and a = 0.2 (red line). (c) Blue line – the
curvature at each point of the refined boundary. Detected extrema are marked by triangles. Green line – the reference method. Note the better localization
(narrower peaks) of the extrema on the blue line. The straight blue lines near zero curvature depict detection thresholds for curvature extrema.

accomplished with two 2× 2 kernels:(
1 −1
1 −1

)
, and

(
1 1
−1 −1

)
.

Second, the new position of the isophote is estimated by
linear regression. The contour vertex is then shifted to the
approximated nearest position on an isophote.

In some pathological cases, like very narrow part of
region or a very sharp corner, it is possible that the new
estimated position of the vertex will be further than half
pixel away from the original position. This is consequence
of the fact that the assumptions about constant gradient in the
neighborhood is not satisfied. The whole contour refinement
procedure is summarized in Algorithm 1.

Contour refinement is the first step of the proposed local
curvature extrema extraction. In the reference work [3] the
curvature is defined as follows: for each vertex x, two
segments l and r of length a are cast on opposite directions
along the polygon boundary (see Figure 5).

The curvature κ is estimated from the cosine of the
angle φ:

cosφ =
lxrx + lyry
|l||r|

,

as follows:

κ = s
1 + cosφ

2
, s =

{
1 if lxry − lyrx > 0
−1 otherwise (3)

The curvature ranges from −1 to 1, equals to 0 for straight
segments, and is negative for concave and positive for con-
vex curvatures (see Figure 5). The curvature of neighboring
vertexes is affected by the choice of the length a (Figure 5b).
We observed that long spans cause undesirable artifacts on
smaller regions with lower resolution. To achieve higher sta-
bility and better localization we propose a novel approach for
extracting local curvature extrema. The proposed approach
differs in three main points:

• a contour vertex is a local curvature extremum, if it is
a pre-image of detected local extremum on a smoothed
contour,

Algorithm 2 Local curvature extrema detection

Input: region contour C, P = trace(C)
Output: curvature extrema E ⊂ P

1) C′ = smooth(C, σ)

Smooth the contour with G0,σ , σ cf. Equation 2, k is set to 60
(contrary to a much milder smoothing k = 30, which is typical if
it is necessary to preserve position of the contour).

2) N ′ = AC′, where A = (chol(Σ))−1

Normalize the contour by an inverse of Cholesky decomposition
of the covariance matrix Σ.

3) Estimate curvature κi at each contour point p′i ∈ trace(N ′), using
Equations 3.

4) µ = E(K), α =
√

1
n

∑n
i=1(µ− κi)2

Compute mean value µ and standard deviation α of estimated
curvatures κi.

5) K = {p′i ∈ trace(N ′)| |κi − µ| > 3σ}
K is the set of local curvature extrema p′ with curvature exceeding
3σ.

6) The local extrema E′ ⊆ K are selected from the candidates K by
non-maxima suppression.

7) Points e ∈ E ⊂ P – the pre-images of e′ ∈ E′ – are the locations
of the local curvature extrema on the original curve.

• smoothing in the first phase is much stronger than in
the reference method, since it does not affect precise
localization of contour extrema,

• thanks to stronger smoothing, much shorter segments
l and r are successfully used in curvature estimation
(Equation 3) to achieve higher stability and suppress
artifacts mentioned above.

The proposed method is summarized in Algorithm 2. For
more detailed information see [8].

III. EXPERIMENTS

The performance of the proposed approach was evaluated
on the state-of-the-art wide-baseline matching approach [3]
(Algorithm 3). Two publicly available datasets were used
in the experiments: ZuBuD [6] and Mikolajczyk’s [2] (Fig-
ure 7). Three approaches to MSER boundary processing
were compared: plain – rough MSER contour without



Figure 6. The comparison of three region contours. White — the original
MSER boundary, Green — smoothed with the Gaussian filter [3], Red —
contour refinement (the proposed approach)

further processing, smooth – Gaussian filtering from the
reference approach [3], refine – the proposed method. We
have focused on two aspects, repeatability and geometric
precision of the proposed method.

A. Repeatability comparison

It has been shown [3] that the elimination of discretiza-
tion effects improves repeatability. However the reference
approach has some disadvantages. One of them is misplacing
of contour primitives. The largest displacement is introduced
to local curvature extrema (Figure 6), concavities and bitan-
gents. Other primitives such as inflection points, or linear
boundary segments gain mainly by improved curvature def-
inition. At last, there are some primitives that are virtually
inaffected by boundary processing, e.g. center of gravity,
matrix of second moments, or orientation of gradients.

In this section, we analyze the repeatability of LAF con-
structions before and after contour refinement, and compare
the proposed approach with the reference one.

Algorithm 3 Wide-baseline matching algorithm

1) MSERs are detected in both images.

2) LAFs are constructed on MSERs with (without) contour refine-
ment, photometrically normalized and described by descriptors.

3) Tentative correspondences are established by finding mutually
nearest descriptions.

4) RANSAC algorithm is used to find inliers to a global model
of geometric transformation – epipolar geometry or homography.
(Inliers are tentative correspondences that are consistent with the
global model of geometric transformation).

Figure 7. Sample images from the ZuBuD [6] (top) and Mikolajczyk’s
datasets (bottom).

In the repeatability experiment, the number of inliers
and the inlier ratio – the number of inliers divided by the
number of tentative correspondences – are measuerd. The
higher the inlier ratio, the faster the geometric verification by
RANSAC [9]. The number of inliers influences the precision
of the model, the probability that the model found by
RANSAC is correct, and improves robustness to occlusion.

The analysis is done on a wide-baseline matching problem
on the ZuBuD dataset. For all pairs formed out of the five
images of each building (2010 pairs in total), we run the
process of finding correspondences (Algorithm 3). Since the
ground truth transformations for pairs of images are not
provided with the ZuBuD dataset, the epipolar geometry
with the highest number of inliers (out of all three ap-
proaches) was used to evaluate the quality of the tentative
correspondences in RANSAC. Similar analysis have been
done for Mikolajczyk’s dataset. In this case, the ground truth
homography transformations are provided with the dataset.
Each of the 5 scenes contains 6 images and homographies
from the first image to the others. All image pairs (25 pairs)
are matched in the experiment.

The overall gain of the proposed approach is shown in
Figure 8 for the ZuBuD dataset and the Mikolajczyk’s
dataset. We compare the improvement (∆ = new− old) of
the proposed method refine over the reference smooth and
plain method (without smoothing). The proposed method
gives better inlier ratio (difference is above zero) in 80% of
image pairs and more inliers in 95% of image pairs.

B. Precision comparison

It is difficult to measure the geometric precision of LAFs
directly. We decided to use geometric hashing with Local
Affine Frames [10]. Each LAF is described by relative poses
of other LAFs in its affine covariant neighborhood in form of
a geometric hash. This representation is insensitive to a wide
range of photometric changes, robust to local occlusions
and computationally efficient, but sensitive to the precision
of LAFs. Therefore, the performance of geometry based
matching is a sensitive indicator of LAF’s precision.

Tentative correspondences of LAF obtained by matching
of geometric hashes are ordered by the number of votes
(probability of being a correct match). It is possible to
exploit this ordering in the geometric verification step using
PROSAC [11] instead of RANSAC. Hence, to highlight the
improvement in the matching results, inlier ratio in 500 best
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Mean

differences
ZuBuD Mikolajczyk’s

∆inliers ∆inlier ratio ∆inliers ∆inlier ratio
refine - smooth 62.5 2.79% 91.9 2.04%
refine - plain 65.1 3.56% 117.2 4.15%

Figure 8. Repeatability comparison on the ZuBuD (top) and Mikolajczyk’s
(bottom) datasets. (a), (c) differences in the number of inliers. (b), (d)
differences in the inlier ratios.

tentative correspondences is considered.
Table I shows the results of matching of two pairs

from Mikolajczyk’s dataset. The proposed method results
in higher number of inliers while preserving inlier ratio. For
the first 500 best tentative correspondences the inlier ratio
achieved by proposed method is significantly higher.

IV. CONCLUSIONS

A new method for MSER contour refinement that takes
into account image intensity function was proposed and
a localization of local curvature extrema improved. The
method achieved (on two publicly available datasets) higher
number of correspondences and higher inlier ratio in more
than 80% of the image pairs and provides more inliers
in 95% of all image pairs. Experiment with geometric
hashing [10] confirms higher geometric precision of detected
LAFs.
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[3] Š. Obdržálek, “Object recognition using local affine frames,”
PhD Thesis, 2007.

[4] F. Mokhtarian and A. K. Mackworth, “A theory of multiscale,
curvature-based shape representation for planar curves,” Pat-
tern Analysis and Machine Intelligence, vol. 14, no. 8, pp.
789–805, 1992.
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