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Chapter 1

Introduction

1.1 Problem Formulation

Feature detection and matching is one of the fundamental problems in com-
puter vision. It is a key ingredient to a wide range of applications including
object recognition [FPZ03, SZ03], wide-baseline matching [TVG00, MCUP02,
MOC02], 3D reconstruction [SSS06, SZ02] (Figure 1.3), mosaicing [BL03] (Fig-
ure 1.2), and tracking [DB06].

Consider the two images of in Figure 1.1. The same object will never
appear identical in images from different viewpoints. There is a number of
aspects that have impact on the final appearance. Position and rotation of the
camera related to the object, scene configuration, camera parameters, lighting
conditions, and so on.

A human brain is easily capable to recognize the same bus, to find corre-
spondences in two or more images. However, in computer recognition systems
this is a non-trivial task. Naive approaches such as simple correlations are
insufficient.

One way is to use a representation, which is invariant, or at least to a
large degree robust to all possible variations of the appearance, but still it has
to be discriminative enough to distinguish between two different objects. In

Figure 1.1: Two different views of the same object. Note the different view-
point, background (also visible trough the windows), different lighting condi-
tions, different tone of color (specular reflections in the left image), etc.
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past eight years significant research have been conducted to solve matching
problem.

Nowadays approaches with the best results in matching problems follow
the same pattern:

1. detection of local features
2. selection of measurement regions
3. description
4. matching
5. spatial verification

Feature detection refers to a method that aims at finding regions in the
image with, in some sense, interesting property. The output of the feature
detector are interest points, which have form of ellipses, blobs, or curves with
high stability and reproducibility.

State of the art of features detectors includes Hessian-affine [MS02] and
Harris-affine [MS02, SZ02] detectors, maximally stable extremal regions detec-
tor (MSER) [MCUP02], edge-based region detector (EBR) [TVG99], detector
based on intensity extrema [TVG00], and detector of ’salient regions’ [KZB04].
The performance between different detectors is usually measured in terms of
repeatability and stability of detected features under various geometric and
photometric transformations.

This thesis is focused on the MSER detector. MSER achieved the highest
score among many tests, proving it to be a reliable region detector [MTS+05].
Especially, in viewpoint change or lighting change tests, it outperforms other
five competitive detectors. In the scale change test, MSER detector comes
in second following Hessian-affine detector. The only area that this type of
detection is not suitable for are blurred scenes, to which the MSER detector
was the most sensitive. However, according to work of Forssén and Lowe
[FL07], a simple multi-resolution extension of the MSER detector improves
the results also in blurred scenes.

While other detectors return elliptical regions, MSER detect contiguous
regions of arbitrary shape. This allows to extract additional points on re-
gions and its contour, and construct the so called Local Affine Frames (LAFs)
[Obd07]. The LAFs are constructed by exploiting multiple affine-covariant
procedures that take the detected regions as input. Assuming locally planar
approximation of object shape, any image measurement expressed in LAF co-
ordinates is viewpoint-invariant. Appearance of the objects is thus represented
by local patches with shapes and locations given by the object-defined affine co-
ordinate system. The need for further transformation of image measurements
to obtain invariant description, such as rotational or differential invariants, is
eliminated.

Main property of detected feature is repeatability. Patches repeatably de-
tectable in multiple images do not necessarily provide good discriminative
power. Commonly, an affine covariant constructions are used to obtain so-
called measurement region [MCUP02]. A measurement region typically in-
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1. Detect feature points, find correspondences between images.

2. Estimate geometric transformations, put all images into one frame.

3. Estimate photometric transformations, blend.

Figure 1.2: Mosaicing – an example of an application that requires finding
correspondences between images.
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1. Detect feature points, find correspondences between images.

2. Estimate epipolar geometry, put all images into one scene.
3. Connect faces, create a 3D model.

Figure 1.3: 3D reconstruction. Courtesy of Lukáš Mach [Mac09].
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cludes some neighborhood of the detected region and is used for the feature
description.

Descriptors either compute a transformation invariant description directly
or by pre-normalization of the patch to a canonical form. The state-of-the-art
descriptor which is most commonly used is SIFT by Lowe [Low99]. This 128
dimensional descriptor (applied to affine normalized patches) gave the best
matching results in an exhaustive evaluation of different descriptors computed
on scale and affine invariant regions [MS03, MS05]. Discrete cosine transform
(DCT) is other descriptor suggested by Obdržálek [Obd07] as fast and memory
efficient choice for describing LAFs. Pure shape descriptor is proposed by
Chum and Matas [CM06]. These will be described in Section 2.3.

Finally, feature matching is provided by examining distances in descriptor
space. Once tentative correspondences are established, they are spatially ver-
ified. This is done by fitting a appropriate geometric model. The RANSAC
[FB81] algorithm is used to achieve a robust estimation of model parameters
[HZ03].

1.2 Goals of the Thesis

In this thesis, our goal is to find out how the post-processing of the MSER
detector can be improved and how to extract better distinguished points from
MSER to create LAFs.

There are several ways how the MSER detector could be improved. Some
of the approaches will be described in Chapter 2. In this thesis, we will look
closer on the MSER contour. We assume that even simple local processing of
the MSER contour can lead to improvement in stability and repeatability of
the region.

The output of the MSER algorithm are sets of connected image pixels,
creating regions and holes at some intensity level – threshold, which locally
maximizes stability of the region. The contours of these regions are aliased
because of discretization effects. In real scenes, the edges are very often smooth
with only few sharp corners. The effect of discretization can be seen on the
image pair in Figure 1.2, where the detected MSER is compared with the
same MSER, but in under-sampled image. In this example, we can see that
discretization affect smaller regions more severely.

If we want to have better approximation of the real regions, we need to
use some post-processing method to smooth the curve (MSER contour) to
reduce artifacts of image rasterization. After this, we will be able to find the
important points of the contour in sub-pixel accuracy with higher stability and
repeatability. One approach how to suppress discretization effect was proposed
in work of Obdržálek [Obd07], which shows that such post-processing can
improve the results significantly.

The proposed approach should improve repeatability and stability of the
distinguished points, which in consequence should improve extraction of the
same points in scenes from largely different viewpoints and in different il-
lumination conditions. This will be measured in terms of repeatability and
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(a) (b)

(c) (d)

Figure 1.4: Discretization effects on a MSER region. (a) Input image for the
MSER detector. (b) The same image, but with 10 times higher resolution used
as ground truth. (c) Detected MSER (blue line) on input image in comparison
to the desired MSER contour. (d) Detected MSER on hi-resolution image.
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precision, and demonstrated on wide-baseline matching problem and object
recognition.

1.3 Thesis Contribution

• A new type of contour reconstruction based on the image intensity func-
tion was proposed. This allows to extract primitives on contour with
subpixel accuracy.

• Exploiting the reconstructed contour a novel approach for detecting local
curvature extrama was introduced.

• An extensive experimental evaluation conducted on two publicly avail-
able datasets (ZuBuD and Mikolajczyk’s) proved that the novel approach
leads to more precise and more repetitive LAF constructions and more
stable SIFT descriptor.

• The proposed methods were implemented and included in source repos-
itory of Center for Machine Perception at Czech Technical University in
Prague, the inventor of MSER.

• There is no trade-off between the accuracy and the running-time, be-
cause the processing time of the proposed contour refinement is negligi-
ble compared to region detection. The proposed algorithm improves the
state-of-the-art detector and should become a standard extension to it.

1.4 Structure of the Thesis

The thesis is structured as follows.

• Chapter 2 gives an overview of the state-of-the-art detectors, measure-
ment region selection and descriptors. A special attention is paid to
MSER detector [MCUP02] and LAFs constructions [Obd07].

• Chapter 3 proposes enhancements to the base MSER detector — re-
construction of region contour based on an image intensity function.

• Chapter 4 introduce a novel method for detection local curvature ex-
trema on refined MSER contour.

• Chapter 5 lays out how the experiments were made and shows the
results.

• Chapter 6 discusses the achievements.

13



Chapter 2

Overview and Related Work

This chapter takes a closer look at the state-of-the-art of affine covariant region
detectors, measurement region selection and descriptors. A special attention
is paid to MSER detector [MCUP02] and LAFs constructions [Obd07].

2.1 Feature Detectors

As mentioned in Chapter 1, the feature detectors have many practical applica-
tions and they have been well described in computer vision literature in recent
years.

In this place, the most important properties of each feature detector are
discussed, which is followed by a brief description of individual detectors. The
detailed comparison with experimental results of selected detectors can be
found in Mikolajczyk et al. [MTS+05].

Desirable properties of regions detected by feature detectors are:

• High repeatability (same regions are detected in different images of same
scene) (Figure 2.2)

– Invariant to geometric transformations (change of viewpoint) (Fig-
ure 2.1)

– Invariant to illumination changes (distinguishable under different
conditions)

– Well localized in their spatial neighborhood (i.e. precision)

• Discriminative neighborhood

• Robust to occlusion (regions are local)

Features are modeled as projections of small, locally planar surface patches
of the 3D scene. Such projections are well approximated by an affine transfor-
mations, hence invariance to affine transformations commonly required.

The shape of the detected regions can vary depending on the detector.
The most detectors return sets of ellipses – Harris-affine, Hessian-affine, and
Intensity-Extrema Based Region Detector (IBR). Output of the Edge-Based

14
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Figure 2.1: Four ellipses as an example of the output of Hessian-affine detector.
Despite change of viewpoint and significant change in scale, features covering
the same surface are detected.

Region Detector (EBR) is the set of parallelograms and the Maximally Stable
Extrema Region Detector (MSER) returns the set of arbitrary shaped bound-
aries of the regions.

If ellipses representation is required, any region can be transformed to
elliptical in an affine covariant manner.

Depending on the input parameters and scene character, detectors usually
extract from a few hundred to several thousands of features.

2.1.1 Affine covariant blob detectors

This class of detectors looks for affine covariant blob features in the image.
They are based on scale-space properties of second order derivative operators
(Hessian and Laplace) [Lin94, Lin09]. Lindeberg observed that scale-space
maxima of Hessian and Laplace operators are preserved for given feature in
images of different scale. Blob detectors Hessian-Laplace, Harris-Laplace, and
Difference of Gaussians (DoG) [MS04, Low99] use this observations to detect
rotationally and scale invariant points. To extend invariance of detected fea-
tures Baumberg [Bau00, LG97] proposed a shape adaptation procedure. There
are couple of blob detectors based on this procedures. Two best performing
according to Mikolajczyk et al. [MTS+05] are Hessian-Affine and Harris-Affine.

The Hessian-Affine detector selects maxima of determinant of Hessian ma-
trix at multiple levels of scale-space pyramid.

H(x) =

(
Lxx(x) Lxy(x)
Lxy(x) Lyy(x)

)
(2.1)

where Lxx(x) is second partial derivative in the a direction x and Lxy(x) is
mixed partial second derivative in the x and y directions. First, rotationally
invariant interest points are located at each scale as extrema of determinant
of Hessian matrix.

15



det(H) = σ2
I (LxxLyy(x)− L2

xy(x))

The scale of each extremum is then selected as a scale maximum of Laplacian
of Gaussians (LoG):

trace(H) = σI(Lxx + Lyy)

As discussed in Mikolajczyk et al. [MS05], choosing points that maximize
the determinant of the Hessian penalizes longer structures that have small sig-
nal changes (second derivatives) in a single direction. Finally, the affine shape
adaptation procedure as proposed by Baumberg [Bau00] is used to obtain affine
covariant interest points. Example of the output from Hessian-affine detector
is shown in Figure 2.1.

The Harris-Affine detector based on the properties of an autocorrelation matrix
of image gradients:

A(x) =
∑
x,y

w(x, y)

(
I2
x(x) IxIy(x)

IxIy(x) I2
y (x)

)
(2.2)

where Ix and Iy are first order derivatives of intensity function in x and y
directions and w is weighting function. The weighting function can be either
uniform (intensity is measured precisely in local window), or better Gaussian
(Equation 2.3) to achieve better robustness.

w(x, y) = g(x, y, σ) =
1

2πσ
e

(
−x

2+y2

2σ

)
(2.3)

Harris and Stephens [HS88] observed that the autocorrelation matrix cen-
tered at well localized interest points has two high and positive eigenvalues, i.e.
gradient changes significantly in two orthogonal directions. They proposed to
select these points by computing maxima of the following response function:

R = det(A)− αtrace2(A) = λ1λ2 − α(λ1 + λ2)2

The Harris-Affine detector finds the maxima of Harris measure at each
scale and selects scale similarly to Hessian-Affine detector by finding maxima
of Laplacian of Gaussians over scales. In second step, the shape of the elliptical
region is determined by the second-moment matrix of the intensity gradient
[Bau00].

2.1.2 An Edge-Based Region Detector (EBR)

Edges are typically the most stable and most descriptive features of a large
domain of objects. This is also the reason why a human brain has developed
the capability of recognizing objects from a set of objects contours. The EBR
detector [TVG99, TVG04] is designed on this base too. Edges are stable over
a range of viewpoints, illumination, and scale change.

16



10 8

Figure 2.2: Repeated features detected with the Hessian-affine detector. For
clarity, only every other correspondence is shown.

Figure 2.3: The edge-based region detector starts from an Harris corner p.
Exploits the edges detected with Canny detector and sets points p1 and p2. p,
p2, and p2 defines parallelogram. Figure taken from [TVG04].

The detected region is a parallelogram, one corner being the corner point
p two other corners p1 and p2 are located on the detected edges l1 and l2
respective. To avoid a 2D search space for locations of p1 and p2, identical
distance to p along the edges is required.

In the first phase, the corner points and two nearby-located edges are ex-
tracted. The Harris corner detector is utilized for detection of the corner points
— this has been already described in Section 2.1.1 — and the Canny detector
[Can86] is used for the edges.

In next phase, points p1 and p2, equally distant from corner point, are set on
these edges l1 and l2. The distance is chosen by maximizing value of specific
function to assure covariance with geometric transformation. This function
and the definition of distance are discussed in detail by Tuytelaars and Van
Gool [TVG99, TVG04].

17



I(t)

f(t)

t

t
t

final ellipse

Figure 2.4: The intensity extrema-based region detector starts from an inten-
sity extrema and examine the intensity function along rays emanating from
this point. Figure taken from [TVG00].

Like the other feature detectors, also this one uses standard technique to
increase the robustness to scale changes. In the first phase, the corner points
with the edges are extracted from an image at multiple scales.

2.1.3 Intensity Extrema-Based Region Detector (IBR)

In the first step of the IBR detector [TVG00], intensity extrema with non-
maximum suppression are localized in image. These are called anchor points.
In second step, the image intensities are explored in radial way from the an-
chor points (Figure 2.1.3). On each ray, one point, which maximizes value of
function

fI(t) =
abs(I(t)− I0)

max
(∫ t

0 abs(I(t)−I0)dt

t
, d
) (2.4)

is selected. In 2.4 t is the distance from the anchor point, I(t) is the intensity
at the distance t, I0 is the intensity value at the extrema, and d is a small
number, which is added just to avoid a division by zero.

The point on the ray selected this way is invariant under affine geomet-
ric and linear photometric transformations, given the ray. Linked points on
all rays create region boundary. The directions of rays cannot be chosen in
covariant manner in general. This can be alleviated by sufficiently dense sam-
pling. For better robustness the authors suggest to replace the regions by an
ellipses having the same shape moments up to the second order. This ensures
covariance with affine geometric transformation.

To increase scale change robustness of detector, detection of the intensity
extrema and all following steps are done at multiple scales.

IBR detector has been the first affine covariant detector used in wide-
baseline matching problems. This detector has been outperform by MSER in
survey [MTS+05] and is rarely used in practice.
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2.1.4 Maximally Stable Extremal Regions (MSERs)

In this section, we recall Maximally Stable Extremal Regions [MCUP02] and
its detector. This will be done in greater detail, as the algorithm proposed in
this thesis aims primary as improvement of MSER detector. In spite of the
fact that the improvements can work in similar manner for all detectors, which
returns region boundary as output, for now, this is the only one of this type
from state-of-the-art detector set.

In the first place, we introduce formal definitions as given in the original paper
on MSER by Matas et al. [MCUP02]:

Image I is a mapping I : D ⊂ Z2 → S. Extremal regions are well defined on
images if:

1. S is totally ordered, i.e. reflexive, antisymmetric and transitive
binary relation ≤ exists. S = {0, 1, . . . , 255} for the one byte rep-
resentation of the pixel intensity.

2. An adjacency (neighborhood) relation A ⊂ D×D is defined. In this
paper 4-neighborhoods are used, i.e. p, q ∈ D are adjacent (pAq) iff∑d

i=1 |pi − qi| ≤ 1.

Region Q is a contiguous subset of D, i.e. for each p, q ∈ Q there is a sequence
p, a1, a2, . . . , an, q and pAa1, aiAai+1, anAq.

(Outer) Region Boundary ∂Q = {q ∈ D \ Q : ∃p ∈ Q : qAp}, i.e. the
boundary ∂Q of Q is the set of pixels being adjacent to at least one pixel
of Q but not belonging to Q.

Extremal Region Q ⊂ D is a region such that for all p ∈ Q, q ∈ ∂Q : I(p) >
I(q) (maximum intensity region) or I(p) < I(q) (minimum intensity
region).

Maximally Stable Extremal Region (MSER). Let Q1, . . . ,Qi−1,Qi, . . .
be a sequence of nested extremal regions, i.e. Qi ⊂ Qi+1. Extremal
region Qi∗ is maximally stable iff q(i) = |Qi+∆ \ Qi−∆|/|Qi| has a local
minimum at i∗ (|.| denotes cardinality). ∆ ∈ S is a parameter of the
method.

The concept can be explained informally as follows: We choose an intensity
threshold t and divide the set of pixels into two groups; B (black) and W
(white). If the pixel has intensity below t it belongs to set B else to set W .

When changing the threshold from maximum to minimum intensity, the
cardinality of the two sets changes. In the first step, all pixels will be contained
in B and W is empty (we see completely black image). As the threshold
t is lowered, white spots corresponding to local intensity maxima start to
appear and grow. At some point, regions corresponding to two local maxima
would merge. Eventually all of them merge when the threshold reaches near
minimum intensity and the whole image will be white (all pixels are in W
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Figure 2.5: MSER evolution. Input image, image converted to grayscale and
results of 9 different thresholding levels are displayed, each time for lower
intensity threshold t.
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and B is empty). Figure 2.5 demonstrates the evolution process with different
threshold levels.

Connected components in these images are called extremal regions – in this
case minimal regions or MSER−. If the image is inverted and whole process
repeated maximal regions or MSER+ are obtained.

Maximally stable regions are those that have changed in size only a little
across at least several intensity threshold levels. The number of levels needed
and a tolerance of change are parameters of the algorithm.

According to the definition given above, totally ordered values of image
pixels are required. The question is: how to design the mapping I for color
image? The common choice is to convert the image into grayscale i.e. to
order the pixels by intensity. Depending on the actual problem being solved,
different orderings can lead to better results. For instance for traffic sign recog-
nition problem, where red, blue, and white regions are the most common, the
projection onto the red-blue axis of the RGB space is recommended [Obd07].
If there is no a priori knowledge about which of the orderings facilitate the
region detection best, multiple orderings can be used simultaneously.

2.2 Measurement region

Measurement region is the part of the image whose appearance, after appro-
priate description (see Section 2.3), is used to determine local correspondences.
The choice of measurement shape is arbitrary and depends on used detector
and descriptor.

Interest points detected by feature detector has to be repeatable but not
necessarily describing. Any function, which create a measurement region in
affine covariant way out of detected region can be used. Mikolajczyk et al.
[MTS+05] examined the effect of rescaling the detected regions on the match-
ing problem and show that enlargement of detected region typically leads to
more discriminative power – certainly for the small regions. However the re-
peatability of such region can be smaller. Large scale factor can be also more
detrimental, due to higher risk of occlusions or non-planarities.

Rescaling is only one option to create measurement region from detected
region. If output of a detector is more complex than just an ellipse — arbitrary
shaped region for instance — more complicated constructions can be made.
Convex hull computed on region is another affine covariant construction, which
can be useful for its robustness. These have been one of the first attempts to
create an affine covariant regions out of contours [LSW90].

In work of Obdržálek [Obd07] Local Affine Frames (LAFs) are presented
as set of affine covariant constructions on distinguished regions – in our case
MSERs. These are described in detail in next section.

2.2.1 Local Affine Frames (LAFs)

There is several ways how can be MSER described. One way is to approximate
MSER with an ellipse with the same shape moments up to the second order
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Figure 2.6: Creation of affine invariant frames with MSER detector and LAFs.

and proceed as in the case of other affine covariant detectors. Other possibility
is to create convex-hull of the MSER if the convex region is required.

In this section we recall local affine frames (LAFs) [Obd07]. For further
describing of the objects appearance is represented by sets of measurements
defined in local coordinate systems that are established on MSER (Figure 2.6).

A local affine frame is constructed by combining affine-covariant primitives
detected on MSER, which constrain all of its six degrees of freedom. The
primitives, which can be extracted from MSER, are for instance points of
extreme curvature on MSER contour, inflection points, or centers of gravity of
MSER. Full list of primitives gives the Table 2.7, and theirs precise definition
can be found in [Obd07].

Number of different LAFs constructions was designed. Overview with ex-
amples are shown in Figure 2.7. The images show basis vectors of the frames
along with the primitives — ellipses representing covariance matrices, linear
segments (e.g. bitangents), and points (e.g. curvature extrema points). Figure
includes a table listing, for each of the frame type, the combination of primi-
tives that define it. For detailed descriptions and definitions, see [Obd07].

2.3 Descriptors

Description is next step in matching problems after feature detection. A de-
scriptor is suitable representation of a local image patch and it is associated
with a appropriate similarity measure – often Euclidean distance, but others
are used as well. Desired properties are:

• The descriptor has to be discriminative, i.e. to be able to distinguish
between a large number of patches.

• The value of the similarity measure should well separate corresponding
and not-corresponding regions (Figure 2.8).

• The descriptor should be insensitive to localization errors of the detector,
i.e. to misalignment of corresponding patches.

• The descriptor should be efficiently computable.

• Evaluation of similarity measure should be efficiently computable.

• Compact representation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Geometric primitive (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)
Centre of gravity of region (i) × × × × × × × ×
Covariance matrix of region (ii) × × × × × × ×
Curvature minima∗ (iv) ×
Curvature maxima∗ (iv) ×
Tangent points of concavity (v) × × × ×
Farthest point on the contour (vi) ×
Farthest point on the concavity (vi) ×
Centre of gravity of concavity (i) × × ×
Covariance matrix of concavity (ii) ×
Direction of bitangent (v) × ×
Inflection point (vii) ×
Direction of linear segment (viii) ×
Third-order moments direction (ix) ×

Figure 2.7: Examples of local affine frames of different types. The table in-
dicates which affine-covariant primitives were combined to obtain the frames.
Figure credits Š. Obdržálek [Obd07].
∗ Affine-covariant localization of curvature extrema requires prior shape nor-
malization by covariance matrix.
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Figure 2.8: The probability that a match is correct can be determined by
taking the ratio of distance from the closest neighbor to the distance of the
second closest. Using a database of 40,000 keypoints, the solid line shows the
PDF of this ratio for correct matches, while the dotted line is for matches that
were incorrect. Image taken from [Low99].

(a) (b) (c)

Figure 2.9: (a) A mug is an example of an object from class that requires a
shape descriptor. (b) An example of scene where the textural descriptor is
appropriate. (c) A giraffe is an example of object class, where the information
is carried in shape, texture, and color simultaneously.

There is a number of approaches for describing features. The most suit-
able method depends on the task and classes of objects to be described. The
descriptors into two groups: shape descriptors and texture descriptors. Con-
sider the scenes in Figure 2.9. If we want to describe a mug, descriptor cannot
use textural information, as the picture on the mug can be nearly anything.
Also there are object classes, in which all the information is carried in tex-
ture or color. For some classes, combination of both types of descriptors is
advantageous.

Shape descriptors include descriptors that compute various edge or contour
signatures [MHYS04], hierarchical or active shape models [FS07, CTCG95],
and others.
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Figure 2.10: DCT representations of ten patches. 10 coefficients per color
channel were used.

2.3.1 Discrete Cosine Transformation (DCT)

One possibility is to represent the local appearance by low-frequency coeffi-
cients of the discrete cosine transformation (DCT). DCT has the desirable
properties of a descriptor. It is computationally eficient, fast algorithms exist
that computes DCT with O(n log n) time complexity. Thanks to widespread
use in image and video compression (JPEG and MPEG), hardware implemen-
tations of DCT are widely available.

Definition of two-dimensional DCT for an input normalized patch I an
output matrix of coefficients D is:

Dp,q = αpαq

N−1∑
m=0

N−1∑
n=0

Im,n cos
π(2m+ 1)p

2N
cos

π(2n+ 1)q

2N
,

where N is the patch resolution in pixels, p : 0 ≤ p ≤ N and q : 0 ≤ q ≤ N are
coefficient indices, and

αp =

{
1/
√
N if p = 0√

2/N if 1 ≤ p ≤ N − 1
, αq =

{
1/
√
N if q = 0√

2/N if 1 ≤ q ≤ N − 1
.

Figure 2.10 shows ten different patches and their DCT representation.
Number of used coefficients is the trade of robustness to frame misalign-

ment and discriminativity. Meanwhile the low-frequencies are less sensitive
to the misalignment the higher frequencies introduce additional information
to descriptor and therefor increase discriminativity. For patch with resolution
21× 21 pixels, use of first 14 coefficients are suggested by Obdržálek [Obd07].

2.3.2 SIFT

The state-of-the-art of textural descriptor class is descriptor SIFT of Lowe
[Low99], which have been used in several experiments in this thesis. The
image patches, which are achieved after normalization of detected features, are
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Figure 2.11: SIFT generation of a keypoint descriptor. Image taken from
[Low99]

described by m dimensional descriptor. This is based on gradient histogram
in patch.

Each patch is divided into a n× n grid and histograms of the direction of
intensity gradients (d bins) are computed for each cell. After various weighting
and normalizations the histograms are serialized into d×n2 dimensional vector
(Figure 2.11). Detailed description of the algorithm can be found in [Low99].
Most common values are n = 4 and d = 8, which creates an 128 dimensional
descriptor.

2.3.3 Geometric hashing with Local Affine Frames

Geometric hashing with Local Affine Frames proposed by Chum and Matas
[CM06] is the representation is a collection of local affine frames that are con-
structed on outer boundaries of maximally stable extremal regions (MSERs)
in an affine-covariant way. Each LAF is described by relative poses of other
LAF in its affine neighborhood. The image is thus represented by quantities
that depend only on the location of the boundaries of MSERs. Inter-image
correspondences between all local affine frames are formed in a linear time by
geometric hashing. Local affine frames, which are also the quantities repre-
sented in the hash table, occupy a 6D space (Figure 2.12).

This representation is insensitive to a wide range of photometric changes,
robust to local occlusions and computationally efficient, but sensitive to pre-
cision of LAFs.
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Figure 2.12: Parameterization of the 6D space of affine invariant descriptors.
First two dimensions are polar coordinates of the central point of the descrip-
tion frame (left). The other four are polar coordinates of the remaining two
points of the DF (right). Courtesy of Ondřej Chum [CM06].
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Chapter 3

Discrete Contour Refinement

Regions returned by MSER detector are connected sets of image pixels. The
outer contour

C = (a1, a2, ..., an), ai ∈ Z2

is Jordan curve (a closed curve that does not intersect itself), where ai = (x, y)
and ∀i :

∥∥ai − a(i mod n)+1

∥∥ = 1. The contour is defined by the outer pixels and
represented as a polygon — a cyclic list of (x, y) coordinates of contour vertices
(the first and the last point are treated as neighbors). The coordinates of these
polygons are integers — corners of the boundary pixels ∂Q — and edges are
axis aligned. If the region contains holes, these are processed separately using
the same algorithm.

As can be seen in Figure 3.1, contours are severely affected by image ras-
terization. Especially contours of smaller regions.

Further refinement of the region contour is important for subsequent LAF
construction. Some of the constructions use primitives defined on a region con-
tour, which is affected by the discretization effects. Reducing the discretization

(a) (b)

Figure 3.1: Examples of detected MSER regions. (a) detected regions rep-
resented by a polygon consisting of pixel boundary segments, (b) the same
regions after contour smoothing with Gaussian kernel.
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artifacts helps to localize such primitives as contour curvature extrema, inflec-
tion points or bitangents with higher precision. Other primitives like center of
gravity or the matrix of second moments remains more or less the same.

As a reference, approach suggested by Obdržálek [Obd07] is briefly re-
viewed. Second, a novel approach for discretized contour refinement is pro-
posed. Unlike [Obd07], the proposed approach uses additional information —
pixels intensities from underlying image — to study local properties.

The output of contour refinement algorithm is contour C ′:

• C ′ = (a′1, a
′
2, ..., a

′
n), ai ∈ R2,

• C ′ is Jordan curve.

• |C ′| = |C|

Contour refinement is applicable to any discretized curve either directly
or with minor changes. The novel contour refinement algorithm proposed in
this chapter is a base for further improvements of the local curvature extrema
extraction. This will be described in Chapter 4.

Experimental evaluation and comparison are given in Chapter 5.

3.1 Contour Smoothing – the Reference Ap-

proach

Contour pre-processing in the reference approach [MM92, Obd07] means to
smooth boundary contour with Gaussian filter. This can be done with weigthed
mean:

a′i =

∑
t atG0,σ(d(ai − at))∑
tG0,σ(d(ai − at))

, (3.1)

where a′i is position of contour vertex i, d(ai, at) is distance on contour between
vertices i and t, and G0,σ(•) is the Gauss PDF with standard deviation σ.
Since ∀i :

∥∥ai − a(i mod n)+1

∥∥ = 1, the smoothing is efficiently implemented as
a convolution of a normalized 1D Gaussian kernel with a sequences of x and y
coordinates separately.

This smoothing method has a parameter σ — standard deviation of Gaus-
sian distribution. The main issue of this method is to choose how strong the
smoothing should be. To preserve scale invariance of regions, σ must be pro-
portional to the square root of the region’s area. In the work of Obdržálek
[Obd07] this is implemented as

σ = max

(√
|Ω|
k

, 1

)
, (3.2)

where |Ω| is size of the region (number of region pixels), and k is parameter,
which controls the amount of smoothing.
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Figure 3.2: Impact of MSER boundary smoothing on recognition rate. Cour-
tesy of Obdržálek [Obd07].

LAFsTest: Region boundary smoothing
Configuration Avg count of frames Avg representation build time

No smoothing 3766 370 ms
k = 10 2514 317 ms
k = 30 2490 311 ms
k = 50 2302 282 ms

Table 3.1: LAFsTest dataset: Number of frames and time needed to build
local representation according to boundary smoothing. Courtesy of Obdržálek
[Obd07].

This approach is not affine-invariant but is fast and sufficiently suppresses
the rasterization effect. As shown in Figure 3.2, contour smoothing has a
good impact on the recognition rate between true positive and false positive
detections in the object recognition problem. Furthermore, this results in
faster processing in later stages since only relevant and interesting primitives
are detected.

In Table 3.1 we can see the impact of smoothing on object recognition rate
while varying the parameter k. It is clear that smoothing improves true posi-
tive, false positive rate but choosing parameter k is trade-off between quality
of suppressing rasterization effect and preservation of local structures. If the
amount of smoothing is too high, the local structures are suppressed, contour
points are shifted towards the center of region and therefor the localization
of contour primitives suffer. On the other hand if the smoothing is too faint,
rasterization effects remains visible and false positive detections of contour
primitives may appear. To avoid this trade-off a novel approach is proposed
(Section 3.2).

Best performance for original approach has been observed with setting
k = 30. Experiments have been done in object recognition problem [Obd07].
This setting have been preserved during comparison with new approach.
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3.2 Contour Reconstruction with 4-point Re-

gression

To avoid the oversmoothing caused by the method [Obd07], we propose to use
the pixel intensities on and around the boundary. We show that this way, even
fine details on large regions are preserved.

We refer to this procedure as contour reconstruction instead of contour
smoothing. Furthermore, because this procedure is useful not only as pre-
processing for extracting region primitives, but treated rather as last stage of
MSER detector we would refer to it as region post-processing.

As shown in Section 3.1 σ has to be bigger for smoothing MSERs with
larger areas. The problem of such approach is therefore more visible for larger
regions with small structures (relative to the region area). If there is no another
interesting information on such MSER contour precision resulting from this
method will suffer. After smoothing out all interesting structures the MSER
became nearly useless. Only small number of LAF construction (those which
depends only on global information) can be build in such case.

Another problem of the contour smoothing is in the local curvature ex-
tremes — sharp corners of the contour. Under the influence of the contour
smoothing, the extremal points lose their sharpness and are strongly shifted
from their original position. Constructions based on these points are therefore
geometrically inaccurate.

In the new approach, we want to look at structures on MSER curves in-
dependently and locally. There is no reason why the small structures should
suffer from being part of larger MSER as it is in the case of convolution with
Gaussian kernel. Instead of this, curve will be refined with assistance of addi-
tional information — the source image.

In the phase of the contour reconstruction, each vertex of the contour is
processed independently of its neighbors. The aim of this method is to shift
each vertex to a ’better’ position. The resolution of contour (i.e. number
of contour vertices) and its discrete representation is preserved. There are
some other possibilities for representation of curve. We choose this approach
to achieve important property — out-of-the-box usability. If the output of
MSER remains unchanged after application of post-processing, it can be used
immediately in all existing applications.

The MSER detector outputs regions which are darker (resp. lighter) than
their neighborhood. This is separated with a threshold intensity. The bound-
ary of the MSER region is an isophote corrupted by the discretization effects.
With this knowledge and the assumption that the gradient is constant in a
small area around examined vertex — four underlying pixels (Figure 3.3),
which have this vertex as one of theirs corner, are used. Using intensities of
these pixels, we can estimate the point lying on the isophote nearest to the
original vertex. After this, we can shift original polygon vertex to new position.
This way we can approximate the isophote contour with minimal changes of
MSER output.

The first step is determining the gradient orientation ∇f(x0,y0) =
(
∂f
∂x
, ∂f
∂y

)
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a b

dc

Figure 3.3: Shifting the vertices on the original contour to a new position.
Yellow cross — the original vertex position, red line — a line with direction of
the gradient, green line — the isophote, green cross — the new vertex position.
The new position is estimated from pixels marked as a, b, c and d.

of the contour vertex, where f is image intensity function and (x0, y0) is vertex
coordination1.

Partial derivations in discrete world can be determine by convolving the
four neighbor pixels with Roberts operator [Rob63]. This is accomplished with
two 2× 2 kernels (

1 −1
1 −1

)
, and

(
1 1
−1 −1

)
. (3.3)

This method is reasonably fast and good enough.
In the second step we want to shift our vertex to the nearest point on

the desired region contour. As we mention before the desired contour is an
isophote on the intensity level, which the MSER detector have used to obtain
our contour.

The nearest point on this contour lies on a line passing through our vertex
with direction given by obtained gradient (Figure 3.3). New vertex cannot be
closer to another possible vertex than to original one. In that case MSER would
choose another vertex. The new position of the vertex is then estimated by
linear regression. The input variables are the positions of four center points of
underlying pixels projected to the gradient direction, the dependent variables
are the intensities of those points (Figure 5.7).

If the assumption about constant gradient is not entirely met, occasionally
an error in linear regression can induce an greater shift. In this case we force
the property

∀i : ‖ai − a′i‖∞ < 0.5,

where ‖•‖∞ denotes L∞ norm, which ensures Jordan contour.
On straight edges, the proposed method gives result similar to [Obd07].

However, significantly better alignment with the original curve is achieved in
areas with greater curvature. Example of this we can see in Figure 3.4. The
precision of the contour restoration is well demonstrated in Figure 3.5, where
the original MSER contour is detected form the same image but with much
better resolution.

1Note that coordinate system of region contours are shifted in comparison to image
coordinates. For example, contour vertex (0, 0) is upper left corner of (0, 0) pixel.
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The contour reconstruction procedure is summarized in following Algo-
rithm:

Algorithm 1 Contour Reconstruction with 4-point Regression

Input: region contour C = (a1, a2, ..., an), image I, intensity threshold t

Output: refined contour C ′ = (a′1, a
′
2, ..., a

′
n)

For each contour vertex a ∈ C estimate refined position a′ ∈ C ′ in the
following way:

1. ∇I(a) =
(
∂I(a)
∂x

, ∂I(a)
∂y

)
Approximate the gradient ∇I(a) of the image intensity function from
four underlying pixels p1, . . . , p4 of vertex a using Roberts opera-
tor [Rob63] (Figure 3.3).

2. Project center points of pixels p1, . . . , p4 to p′1, . . . p
′
4 with orthogonal

projection to line passing trough vertex a in the gradient direction.

3. Estimate the new position a′ of the vertex a for threshold t by linear
regression. The regressors are xi = ‖p′i − a‖, and pixel intensities I(pi)
are the regressands.

LAF constructions derived from the restored contour are more repetitive
and more geometrically precise. Experimental comparison of these methods is
evaluated on wide-baseline matching problem and described in Section 5.2.1.
One of the experiments 5.6 also shows smaller distances between corresponding
SIFT descriptors created from these contours than from the reference ones.

Note that the given assumption about constant gradient on the four ad-
jacent pixels is not very limiting. Even in sharp or complicated images the
area spanned by four pixels is small enough for such condition. Situation is
a bit more difficult on very sharp corners when the isophote is curved within
the bounds of one pixel. In such case it is impossible to extract the exact
position of the peak without further assumptions, since the information is lost
in aliasing. A few examples demonstration the validity of the asumption about
the gradient are given in Section 5.2.3.
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Figure 3.4: The comparison of three region contours. Yellow — the original
MSER boundary, Red — smoothed with the Gaussian filter [Obd07], Green
— contour reconstruction (the proposed approach)
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(a) (b)

(c) (d)

Figure 3.5: Comparison of detected contour (red) with contour detected on
ten times higher resolution (white). (a) High resolution image with MSER
contour without smoothing or reconstruction. (b) Red contour without post-
processing. (c) Red contour after smoothing with Gaussian filter. (d) Red
contour after reconstruction (new approach).
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Chapter 4

LAF constructions using
curvature extrema

As another contribution of this thesis, we propose a novel approach to curva-
ture extrema detection. Unlike in [Obd07], the curvature is not computed at
every point of the contour, but the extrema are detected directly.

4.1 Reference Contour Curvature Definition

Two of the LAF constructions are dependent on contour curvature. These
are curvature minima and maxima used with center of gravity and covariance
matrix of the region (first and second algebraic moments). Curvatures of
MSER contour is not affine invariant unless the region is normalized.

In [Obd07], first of all the covariance matrix is computed. Then the region
is normalized so that the covariance matrix of the resulting shape equals to the
identity matrix. Shape normalization together with the position of the center
of gravity of the region, fixes the affine transformation up to a rotation. If
the rotation is fixed with point of curvature extrema computed on normalized
contour, achieved patch will be affine-invariant.

Approximate ’curvature’ is computed in [Obd07] as follows: For each vertex
x, two segments l = xl and r = xr of defined length a are spanned in opposite
directions along the polygon boundary (see Figure 4.2). The cosine of the
angle φ is:

cosφ =
lxrx + lyry
|l||r|

from which the curvature is estimated as:

curvature κ = s
1 + cosφ

2
, where s =

{
1 if lxry − lyrx > 0
−1 otherwise

(4.1)
The curvature ranges from −1 to 1, equals to 0 for straight segments, and is

negative for concave and positive for convex curvatures. An example of the
curvature values is shown in Figure 4.4. The important property of this defi-
nition is preserving local curvature extrema and inflection points. Histogram
of curvatures on MSER contours is shown in Figure 4.1.
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Figure 4.1: Histogram of curvatures on MSER contours.

(a) (b)

Figure 4.2: (a) Curvature estimation. (b) Curvature computed for two different
values of a, a = 0.5 (blue line) and a = 0.2 (red line). Courtesy of Obdržálek
[Obd07].
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Figure 4.3: Four examples of inflection points localization. On the right side
of each image is the contour of the normalized region. Red dots highlight the
location of the inflection point. Green dots show the concave/convex part of
the curve consecutive to the point of inflect. Curvatures of the marked points
is shown on the left side of each plot. The distance from inflection point is
shown on the horizontal axis.

This approach has one parameter — length of spanned arms. If the arm
is shorter, more extrema are retrieved and process is easily affected by noise.
On the other hand long arms ignore small structures.

The curvature definition used in [Obd07] is quite problematic. Curvature
of neighboring vertices is affected by the choice of the length of the arms, which
creates undesirable artifacts mainly on smaller regions with lower resolution.
This is demonstrated on selected regions in Figure 4.3. There are several
approaches for the curvature estimation on discretized contour.

4.2 Proposed Contour Curvature Extrema De-

tection

If the contour has low resolution it will be problematic to estimate curvature
with any method. It is not necessary to estimate curvature for LAF construc-
tions using curvature extrema. It is sufficient to detect the extremal points
in affine-invariant way. We treat curvature extrema as originating from two
types:

• the first is caused by the noise on the contour, which includes inprecission
in the image aquiring, rasterization artefacts, etc. This type of curvature
extrema is not repeatable over images and hence should be suppressed.

• repeatable, curvature extrema defined by the shape of the boundary.

We model the first type as having curvature Gaussian distributed from an
ideal contour curvature before discretization, the second as deviations from
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this distribution. The smoothing in [Obd07] provides good smoothed con-
tour. Note that curvature extrema are shifted more from original position.
However, once the curvature extrema are detected, we use their positions on
contour before smoothing. Since this approach avoid the trade-off between
suppressing discretization effects and preservation of local structures, we use
stronger smoothing to complete suppression of discretization effects. The k in
Equation 3.2 was set to 60.

In the thesis, we propose following algorithm:

Algorithm 2 Local curvature extrema detection

Input: region contour C, P = trace(C)

Output: curvature extrema E ⊂ P

1. C ′ = smooth(C, σ)
Smooth the contour with a Gaussian kernel with σ proportional to the
root of region area. (Same as in approach described in Section 3.1, but
with k = 60.)

2. N ′ = AC ′, where A = (chol(Σ))−1

Normalize the region shape by the inverse of Cholesky decomposition of
th covariance matrix Σ, so that the covariance matrix of the resulting
shape equals to the identity matrix. (Same as in approach described in
Section 3.1.)

3. At each contour point p′i ∈ trace(N ′), the curvature κi is estimated
from the neighboring contour points using Equations 4.1.

4. µ = E(K), σ =
√

1
n

∑n
i=1(µ− κi)2

Mean value µ and standard deviation σ of estimated curvatures κi is
computed.

5. K = {p′i ∈ trace(N ′)| |κi − µ| > 3σ}
Set of local curvature extrema candidates K is composed of points p′

with curvature exceeding 3σ are candidates for local curvature extrema.

6. The local extrema E ′ ⊆ K are selected from the candidates K by
non-maxima suppression.

7. Points e ∈ E ⊂ P – the pre-images of e′ ∈ E ′ – are the locations of the
local curvature extrema on the original curve.

Detection of local curvature extrema in comparison with reference method
is shown in Figure 4.4.
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(a) (b)

(c) (d)

(e)

Figure 4.4: The comparison of local curvature extrema detection on MSER
contour for two different post-processing method. (a) An input image. (b)
and (d) detected MSER contours. Original contour is red. Contour smoothed
with Gaussian kernel is green and reconstructed contour with the algorithm
proposed in this thesis is blue. (c) Normalized contours. (e) Chart with vertices
curvatures. Detected extrema is marked with triangle. Note better localization
(narrow peaks) of extrema on blue contour. Straight blue lines around zero
curvature are detected curvature outliers thresholds.
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Chapter 5

Experimental Validation

In this chapter the performance of the proposed approach is evaluated on wide-
baseline matching problem. In next section two datasets which have been
used in the experiments are introduced. Section 5.2 then evaluates important
aspects of the recognition system: repeatability of MSERs, precision of the
detected features, and the number of correctly detected correspondences.

5.1 Datasets

The following two standard datasets have been used in the experimental eval-
uation.

5.1.1 ZuBuD Dataset

The ZuBuD dataset represents a larger, real-world problem, with images taken
outdoor, with occluded objects, varying background, and mild illumination
changes. ZuBuD contains images of 201 buildings in Zurich, Switzerland, and is
publicly available [SSVG03]. The database consists of five photographs of each
of the 201 buildings, 1005 images in total. Image resolution is 320×240 pixels.
The photographs are taken from different viewpoints but under approximately
constant illumination conditions.

Figure 5.1: ZuBuD dataset [SSVG03]: Examples of corresponding database
images. Five images are present for every of the 201 buildings.
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Figure 5.2: Subset of images from Mikolajczyk dataset. The homography
between the images is known.

5.1.2 Mikolajczyk’s Dataset

Mikolajczyk et al. [MTS+05] studied the repeatability of various affine in-
variant detectors. A database of images with increasing effect of different
distortions — viewpoint, orientation, and scale change — is provided for the
purposes of comparison. The images depict planar objects, thus homographies,
which are known for the data, describe geometric transformations. Localiza-
tion of detected primitives can be therefore directly compared across different
views. We use the same subset of this dataset (shown in Figure 5.2) similarly
as in reference work [Obd07] to compare the proposed method reference one.

5.2 Repeatability and Precision Comparison

In this section we compare three approaches to MSER boundary processing:
plain – rough MSER contour without further processing, smooth – Gaussian
filtering from the reference approach [Obd07], refine – the proposed method
described in Chapters 3 and 4.

5.2.1 Repeatability Comparison

It has been shown [Obd07] that the elimination of discretization effects im-
proves repeatability (see Table 3.1). However, the reference approach has also
some disadvantages, which have been discussed in Chapter 3. One of them is
misplacing of some contour primitives. The largest displacement is introduced
to local curvature extrema (Figure 3.4), concavities and bitangents. Other
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primitives such as inflection points, or linear boundary segments gain mainly
by improved curvature definition. At last, there are some primitives that are
virtually inaffected by boundary processing, e.g. center of gravity, matrix of
second moments, or orientation of gradients. The affected constructions of
LAFs (i.e. constructions (a), (b), (e), (h), (i), and (k) from Table 2.7, denoted
in the following as selected set) were selected for the comparison.

In this section we analyze repeatability of LAF constructions before and
after contour reconstruction, and compare proposed approach with reference
one. The analysis is done on ZuBuD dataset and wide-baseline matching
problem. For all pairs formed out of five images each building (2010 pairs in
total), we run the process of finding correspondences.

Algorithm proceeds as follows:

1. MSERs are detected in both images.

2. LAFs are constructed on MSERs with (without) contour refinement,
photometrically normalized and described by descriptors.

3. Tentative correspondences are established by finding mutually nearest
descriptions.

4. RANSAC algorithm is used to find inliers to a global model of geometric
transformation – epipolar geometry or homography. (Inliers are tentative
correspondences that are consistent with the global model of geometric
transformation).

Since the ground truth transformations for the pairs of images are not pro-
vided with the ZuBud dataset, the epipolar geometry with the highest number
of inliers was used to evaluate the quality of the tentative correspondences in
RANSAC.

Similar analysis have been done for Mikolajczyk’s dataset. In this case
ground truth of homography transformations provided with dataset have been
used. Each of 5 scenes contain 6 images with homography transformation from
first image to the others. This results to evaluation for 25 pairs.

First, a detailed table of comparison is shown for one example image pair
(image 1 and image 3 from Figure 5.3), one by one primitive from selected set of
local affine frames constructions (Table 5.1). Overall gain from the proposed
approach is shown in Figure 5.4 for ZuBuD dataset and in Figure 5.5 for
Mikolajczyk’s dataset. We observe that proposed method increases the number
of inliers for most constructions while preserving or improving the inlier ratio.
Note that proposed method gives better inlier ratio in 80% of all image pairs
and in 95% of all image pairs porposed method provides more inliers.

The inlier ratio is the number of inliers divided by the number of tentative
correspondences. The higher inlier ratio, the faster the geometric verification
by RANSAC [HZ03]. With increasing number of inliers the precision of the
geometric model is increased. Higher number of inliers also guarantees higher
insensivity to occlusion, since certain absolute minimal number of inliers is
required to distinguish correct solution from random constellation of outliers.
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image 1 from Figure 5.3, 378 MSERs
approach: smooth refined
LAF construction desc tc inl desc tc inl
CG+CURV MIN 545 230 70 607 285 120
CG+CURV MAX 825 397 218 1074 528 283
2TP+CONC 342 150 40 305 138 42
CG+BT 781 311 128 370 165 90
CCG+BT 210 90 37 186 78 35
CG+INFLECT 248 102 48 730 313 139
TOTAL 2951 1280 541 3272 1507 709

LAF construction tc/desc inl/desc inl/tc tc/desc inl/desc inl/tc
CG+CURV MIN 42.2% 30.4% 12.8% 47.0% 42.1% 19.8%
CG+CURV MAX 48.1% 54.9% 26.4% 49.2% 53.6% 26.4%
2TP+CONC 43.9% 26.7% 11.7% 45.2% 30.4% 13.8%
CG+BT 39.8% 41.2% 16.4% 44.6% 54.5% 24.3%
CCG+BT 42.9% 41.1% 17.6% 41.9% 44.9% 18.8%
CG+INFLECT 41.1% 47.1% 19.4% 42.9% 44.4% 19.0%
TOTAL 43.4% 42.3% 18.3% 46.1% 47.0% 21.7%

image 2 from Figure 5.3, 485 MSERs
approach: smooth refined
LAF construction desc tc inl desc tc inl
CG+CURV MIN 753 230 70 770 285 120
CG+CURV MAX 965 397 218 1315 528 283
2TP+CONC 449 150 40 385 138 42
CG+BT 1031 311 128 471 165 90
CCG+BT 277 90 37 249 78 35
CG+INFLECT 283 102 48 854 313 139
TOTAL 3758 1280 541 4044 1507 709

LAF construction tc/desc inl/desc inl/tc tc/desc inl/desc inl/tc
CG+CURV MIN 30.5% 30.4% 9.3% 37.0% 42.1% 15.6%
CG+CURV MAX 41.1% 54.9% 22.6% 40.2% 53.6% 21.5%
2TP+CONC 33.4% 26.7% 8.9% 35.8% 30.4% 10.9%
CG+BT 30.2% 41.2% 12.4% 35.0% 54.5% 19.1%
CCG+BT 32.5% 41.1% 13.4% 31.3% 44.9% 14.1%
CG+INFLECT 36.0% 47.1% 17.0% 36.7% 44.4% 16.3%
TOTAL 34.1% 42.3% 14.4% 37.3% 47.0% 17.5%

Table 5.1: Repeatability comparison. CG = center of gravity of region,
CURV MIN/MAX = curvature extrema, 2TP = Tangent points of concav-
ity, CONC = Farthest point on the concavity, BT = Direction of bitangent,
CCG = center of gravity of concavity, INFLECT = inflection point. desc =
number of LAFs constructions, tc = number of tentative correspondences, inl
= number of inliers

ZuBuD Mikolajczyk’s
mean differ-
ence in num-
ber of inliers

mean differ-
ence in inlier
ratio

mean differ-
ence in num-
ber of inliers

mean differ-
ence in inlier
ratio

refine - plain 65.1 3.56% 117.2 4.15%
refine - smooth 62.5 2.79% 91.9 2.04%

Table 5.2: Overall gain from proposed approach evaluated on ZuBuD and
Mikolajczyk’s dataset.
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image 1 image 2 image 3

Figure 5.3: Images from comparison in Table 5.1 and Table 5.3

5.2.2 Precision comparison

In this section, two types of experiments are conducted to comapre the presion
of the geometric localization of the LAFs.

SIFT descriptor stability. Precise geometric location of the measurement
region (LAF) is important for the stability of the descriptor. If the local affine
frame is located over different physical surface in different images, then the
descriptors are computed from different signals. Small deviations are typically
handled by robustness build in the descriptor. However, higher precision of
geometric location brings higher stability of the descriptor and finally results
in better matching results. The precision of the geometric localization of LAFs
is first compared through the comparison of stability of the SIFT descriptor.

Figure 5.6 compares SIFT distances of inliers and outliers as well as dis-
tances ratio of between first closest and second closest neighbor for different
contour refinement methods. Note that distances and distances ratio of inliers
are the smallest one for the method proposed in this thesis.

Geometry based matching. The matching results of geometric hashing
with LAFs [CM06] are compared. Unlike the SIFT descriptor, the geometric
hashing is not using the intensity function to compute the descriptor. The
descriptor is based on mutual geometric positions of pairs of LAFs in each
image. Hence, such an approach is extremely sensitive to the precision of the
geometric localization.

Influence of precision of the LAF constructions are the most significant
in this experiment. Table 5.3 shows results from matching of two pairs from
Mikolajczyk’s dataset.

The tentative correspondences obtained by geometric hashing are natu-
rally ordered by their quality (i.e. probability of being a correct match)
[CM06]. This ordering can be exploited in the geometric verification step
using PROSAC [MC05] instead of RANSAC. To highlight the improvement in
the matching results inlier ratio at 500 best tentative correspondences is also
considered, see Table 5.3.
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Figure 5.4: Repeatability comparison on ZuBuD dataset. (a) Difference be-
tween inlier ratios. (b) Difference between number of inliers.
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Figure 5.5: Repeatability comparison on Mikolajczyk’s dataset. (a) Difference
between inlier ratios. (b) Difference between number of inliers.
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Figure 5.6: (a) PDF of distances for inlier and outlier pairs for different contour
refinement methods. (b) PDF of distances ratio between first closest and
second closest neighbor for different contour refinement methods.
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image 1 ↔ image 2 from Figure 5.3
all best 500 tc

method tc inl tc/inl inl tc/inl
plain 622 425 68.3% 418 83.6%

smooth 678 516 76.1% 458 91.6%
refine 921 702 76.2% 486 97.2%

image 1 ↔ image 3 from Figure 5.3
all best 500 tc

method tc inl tc/inl inl tc/inl
plain 500 284 56.8% 284 56.8%

smooth 566 337 59.5% 337 67.4%
refine 801 470 58.7% 409 81.8%

Table 5.3: Matching results for geometric hashing with LAFs. tc = number of
tentative correspondences, inl = number of inliers

5.2.3 Position Estimation Error

In this section, we will look closer on estimation of new positions for contour
polygon vertices. As we mentioned in Section 3.2 there is one assumption
about the gradient around processed vertex. We assume that gradient on
the four underlying pixels is constant. This is not necessary true in general.
The condition is not entirely satisfied in noisy images or sharp corners, but
we can still estimate new position with the maximum likelihood (Figure 5.7).
Furthermore, we can compute error of position estimation as mean square error
of regression and see how good this model fits.

49



- 1.0 - 0.5 0.0 0.5 1.0

50

100

150

200

250

- 1.0 - 0.5 0.0 0.5 1.0

50

100

150

200

250

- 1.0 - 0.5 0.0 0.5 1.0

50

100

150

200

250

- 1.0 - 0.5 0.0 0.5 1.0

50

100

150

200

250

- 1.0 - 0.5 0.0 0.5 1.0

50

100

150

200

250

- 1.0 - 0.5 0.0 0.5 1.0

50

100

150

200

250

- 1.0 - 0.5 0.0 0.5 1.0

50

100

150

200

250

- 1.0 - 0.5 0.0 0.5 1.0

50

100

150

200

250

Figure 5.7: Examples of new vertex position estimation. Red dots represent
centers of the underlying pixels, where the value on x-axis means distance from
the original vertex position and y-axis represents the pixel intensity. Blue line
is the linear model fitted to the intensity function, and green dot is the new
estimate of the vertex position. In this example an isophote on intensity level
162 is considered.
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Chapter 6

Conclusions

Maximally Stable Extremal Region (MSER) detector extracts a comprehen-
sive number of image features, which are the base for many applications in
computer vision. Detected regions have good properties and in many types of
scenes outperforms the other affine covariant region detectors, proving MSER
to be a reliable state-of-the-art region detector.

Local Affine Frames (LAFs) construct measurement regions on primitives
extracted from the detected regions. A number of these primitives are defined
on region contour. Since the boundary of region is defined by set of pixels, the
contour is affected by rasterisation, which negatively affects the precision of
created LAFs. The more precise LAF constructions are, the more stable and
distinguishable are the descriptions. This leads to faster spatial verification
and higher number of correspondences established between images.

Methods for suppressing rasterisation effects were studied in this thesis and
a new type of contour reconstruction based on the image intensity function was
proposed. This allows to extract primitives on contour with subpixel accuracy.
On the base of reconstructed contour the novel approach for detecting local
curvature extrama was introduced.

The methods were implemented and extensive experimental evaluation was
conducted on two publicly available datasets (ZuBuD and Mikolajczyk’s).
Three approaches to MSER contour processing were compared. Rough MSER
contour without further processing, Gaussian filtering from the reference ap-
proach, and the proposed method. The evaluation included the following ex-
periments. To assess the repeatability, wide-baseline matching of 2010 image
pairs from the ZuBuD database was conducted. The precision of the geometric
localization of the detected features was tested in two complementary ways.
First, the stability of the SIFT descriptor was measured. Second, the results
of image matching based on geometric hash were compared. The results of
all the experiments proved that the novel approach leads to more precise and
more repetitive LAF constructions and more stable SIFT descriptor.

Since the processing time is insignificant to the time of region detection,
there is no reason not to include the proposed algorithms as a standard exten-
sion and improvement of popular state-of-the-art MSER detector. The source
codes are already included in source repository of Center for Machine Percep-
tion at Czech Technical University in Prague, the inventor of MSER.
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Appendix A

Demostration software

To show the performance of proposed contour refinement method a simple
demonstration software is provided on attached CD. It presents the solution
of the correspondence problem in wide baseline setup. It is built on the state
of the art method that uses MSER detector [MCUP02], LAFs [Obd07] and
finally SIFT descriptors [Low99].

A.1 Structure of the attached CD

My modifications replace the original contour smoothing algorithm and detec-
tion of distinguished points on a contour of extremal region (extrema of curva-
ture, inflection points...). They inherit and overwrite the original classes and
methods. The source codes of my modifications are available in subdirectory
refinement/refinement/, files distinguishedregionsng.*, lafsng.*. Fi-
nally, the source code of the demonstration program is in refinement.cpp.
Demonstration software depends on a several libraries kindly provided by the
Center of Machine Perception and publicly available library Lapack, all located
in refinement/lib/win32 directory. To build the sources on Win32 platform
a Visual Studio 2008 solution is provided in the refinement directory. Addi-
tionally, a set of images is provided in directory refinement/pics.

A.2 Functionality

Attached software demonstrates the process of finding correspondences be-
tween two wide baseline images of the same scene. The image names are
provided using commandline parameters -i1 img1.ppm, -i2 img2.ppm, only
.ppm image file-format is supported.

In the first phase of the algorithm, MSER regions are detected in a both im-
ages independently. Then contours are processed by one of the three methods
selected by a commandline parameter -method:

• 0 - no contour smoothing,
• 1 - contour smoothing proposed by [Obd07],
• 2 - proposed contour reconstruction method.
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Afterwards, a set of local affine frames is computed (from the computed dis-
tinguished points), photometrically normalized and described using SIFT de-
scriptors. Finally, a set of tentative correspondences is found using nearest
neighbours in the space of SIFT descriptors. Other matching methods and
parameters of the local affine frame construction can be set in lafs.cfg that
have to be located in the binary working directory.

If requested with parameter -tc tcfilename, a set of tentative correspon-
dences is output to a file in form of 3xN corresponding points in homogenous
coordinates (x1,y1,1,x′1, y′1,1,x2,y2,1,x′2 . . ., y

′
3,1) resulting in 18 numbers for

each pair for each matching LAF.
Optionally a globally consistent model of epipolar geometry or homography

and a set of inliers to the model is sought by RANSAC [FB81, Chu05] and
inliers output into file set by -inl inlfilename.

Demonstration program also allows to set the parameters -ms, -mm and
-per of the MSER detector, that controls the size of smallest detected region,
stability (measured in number of intensities) and percentage of the image cov-
ered by the largest detected region. These are tuned to work well on images
of approximately 1 Mpixel. Other parameters of the local affine frames con-
struction and matching method are available in lafs.cfg configuration file
and described in [Obd07]. It is safe to keep them untouched.

Summary of the usage

Running with proposed regression contour refinement.

Usage: refinement.exe [options]

-i1 (null) [null] input image1 (ppm, pgm)

-i2 (null) [null] input image2 (ppm, pgm)

-tc (null) [null] output file for tentative correspondences

-inl (null) [null] output file for inliers to the model

-method (2) [2] contour refinement method (0 - none,

1 - smoothing,2 - proprosed regression)

-model (2) [2] global transformation model (0 - none,

1 - homography, 2 - epipolar geometry)

-ms (30) [30] minimum size of output region

-mm (10) [10] minimum margin

-per (0.010) [0.010] maximum relative area

-help (0) [0] print out usage info

Dependencies:

Option -i1 is compulsory

Option -i2 is compulsory

Errors detected during option parsing:

Missing compulsory option -i1

Missing compulsory option -i2

Example results using reference method

<CDROOT>\refinement\bin\refinement.exe -i1 ../pics/graffA.ppm

-i2 ../pics/graffB.ppm -method 1 -model 1

Running gaussian smoothing of contour.
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Processing image ../pics/graffA.ppm

Detected 369 MSER+ and 421 MSER- regions in 0.095 sec.

Computing DRs...790 distinguished regions in 0.244 sec.

Generating LAFs...11141 local affine frames in 5.026 sec.

Processing image ../pics/graffB.ppm

Detected 158 MSER+ and 341 MSER- regions in 0.083 sec.

Computing DRs...499 distinguished regions in 0.170 sec.

Generating LAFs...6191 local affine frames in 2.786 sec.

Finding tentative correspondences... 1670 pairs in 9.270 sec.

Removing inconsistent correspondences ...

Got 730 consistent correspondences in 0.035 sec.

Running LO-RANSAC(H)

313 inliers, inlier ratio: 42.877%

Example results using proposed method

<CDROOT>\refinement\bin\refinement.exe -i1 ../pics/graffA.ppm

-i2 ../pics/graffB.ppm -method 2 -model 1

Running with proposed regression contour refinement.

Processing image ../pics/graffA.ppm

Detected 369 MSER+ and 421 MSER- regions in 0.095 sec.

Computing DRs...790 distinguished regions in 0.314 sec.

Generating LAFs...10626 local affine frames in 4.752 sec.

Processing image ../pics/graffB.ppm

Detected 158 MSER+ and 341 MSER- regions in 0.085 sec.

Computing DRs...499 distinguished regions in 0.221 sec.

Generating LAFs...5781 local affine frames in 2.563 sec.

Finding tentative correspondences... 1658 pairs in 7.620 sec.

Removing inconsistent correspondences ...

Got 821 consistent correspondences in 0.032 sec.

Running LO-RANSAC(H)

394 inliers, inlier ratio: 47.990%

A.3 Visualization

A simple matlab script refinement/bin/refinement.m is provided for results
visualization. Note that the script writes the output files into current directory
and therefore write permission is required. Figure A.1 shows the visualization.

Example results of visualization script

Running with proposed regression contour refinement.

Processing image ..\pics\busA.ppm

Detected 188 MSER+ and 313 MSER- regions in 0.050 sec.

Computing DRs...501 distinguished regions in 0.132 sec.

Generating LAFs...6167 local affine frames in 2.255 sec.

Processing image ..\pics\busB.ppm
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Detected 131 MSER+ and 239 MSER- regions in 0.048 sec.

Computing DRs...370 distinguished regions in 0.110 sec.

Generating LAFs...4333 local affine frames in 1.595 sec.

Finding tentative correspondences... 1063 pairs in 2.974 sec.

Removing inconsistent correspondences ...

Got 422 consistent correspondences in 0.014 sec.

Running LO-RANSAC(F)

310 inliers, inlier ratio: 73.460%

Running gaussian smoothing of contour.

Processing image ..\pics\busA.ppm

Detected 188 MSER+ and 313 MSER- regions in 0.050 sec.

Computing DRs...501 distinguished regions in 0.111 sec.

Generating LAFs...6070 local affine frames in 2.210 sec.

Processing image ..\pics\busB.ppm

Detected 131 MSER+ and 239 MSER- regions in 0.049 sec.

Computing DRs...370 distinguished regions in 0.084 sec.

Generating LAFs...4205 local affine frames in 1.556 sec.

Finding tentative correspondences... 929 pairs in 2.881 sec.

Removing inconsistent correspondences ...

Got 286 consistent correspondences in 0.012 sec.

Running LO-RANSAC(F)

230 inliers, inlier ratio: 80.420%
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Figure A.1: Example output of wide-baseline matching. Yellow dots are ten-
tative correspondences. Inliers are connected with lines. (a) The proposed
method. (b) The reference method.
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[Mac09] Lukáš Mach. Semi-automatic system for reconstruction of 3d
scenes. Master’s thesis, Faculty of Mathematics and Physics,
Charles University in Prague, 2009.
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