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Abstract

Most effective particular object and image retrieval ap-
proaches are based on the bag-of-words (BoW) model.
All state-of-the-art retrieval results have been achieved by
methods that include a query expansion that brings a sig-
nificant boost in performance.

We introduce three extensions to automatic query expan-
sion: (i) a method capable of preventing tf-idf failure caused
by the presence of sets of correlated features (confusers),
(ii) an improved spatial verification and re-ranking step that
incrementally builds a statistical model of the query object
and (iii) we learn relevant spatial context to boost retrieval
performance.

The three improvements of query expansion were eval-
uated on standard Paris and Oxford datasets according
to a standard protocol, and state-of-the-art results were
achieved.

1. Introduction
Many successful particular object and image retrieval ap-

proaches are based on the bag-of-words (BoW) model in-
troduced in [23]. In such retrieval methods, the query is
represented by “a bag of” discretised descriptors of interest
points called visual words. A shortlist of potentially rele-

Query Top results (due to the confusers) Confuser Object Automatic failure recovery results

Query Verified results Learned context Top results
c l o s e  u p c l o s e  u p

Difficult images with occlusion
Figure 1. Automatic Failure Recovery (top): Initial retrieval results corrupted by confusing water features. The confuser model is learned
dynamically. Successful subsequent query using the confuser model. Context expansion (bottom): Spatially consistent context is learned
from retrieved images. This enables successful retrieval (before to first false positive image) and localization of heavily occluded objects.

vant documents is efficiently retrieved by tf-idf scoring us-
ing inverted file. The candidate images in the shortlist are
spatially verified. Finally, a new, “expanded” query, includ-
ing features from verified shortlisted images, is issued.

Virtually all aspects of particular object BoW-type re-
trieval have been intensively studied: feature detectors and
descriptors [14, 5, 25, 15, 16], vocabulary construction [23,
18, 21, 9, 17], spatial verification and re-ranking [21, 9],
document metric learning [12, 10, 6] and dimensionality re-
duction [11, 20].

In this paper, we focus on the query expansion (QE)
step. Automatic query expansion [7] has been shown to
bring a significant boost in performance [7, 22, 10, 19], and
all state-of-the-art retrieval results have been achieved by
methods that include a QE step. Published QE methods fo-
cus on enriching the query model by adding spatially veri-
fied features. Retrieval with the “expanded” query follows.
It has been observed that if the shortlist has enough true pos-
itives, the spatial verification re-ranking almost always cor-
rectly identifies relevant images, and, consequently, results
for the expanded query are significantly better than the orig-
inal single image query. Conversely, if BoW fails to the ex-
tent that there are no, or very few, correctly retrieved images
in the shortlist, standard QE is of no help. One such situa-
tion, which arise in the presence of structures with multiple
correlated features, have been referenced in the literature as
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cooc-sets [6] or confusers [13]. The tf-idf over-counting [6]
caused by the correlated (second order statistics) structures
cannot be alleviated by approaches analysing the first order
(count) statistics of image features (e.g. [10]).

As the first contribution, we show how to detect and
recover from the tf-idf failure situation. Unlike other ap-
proaches, the proposed method handles the presence of con-
fusers in the query region on-the-fly, with no prior learning
step required. The performance achieved is comparable to
the state-of-the-art without the need for off-line and poten-
tially time-consuming processing that is difficult to execute
for a continuously updated database.

As the second contribution, we improve spatial verifi-
cation and re-ranking by taking account of already evalu-
ated results. The incremental spatial re-ranking (iSP) al-
lows verification and subsequent use of images for query
expansion that do not have a significant match against the
original query, but do match a statistical model gradually
built from the query and previously verified images.

As the third contribution, we propose a method that ex-
ploits spatial context by incorporating matching features
outside the initial query boundary into the query expansion.
Since the content outside the query region is not known at
query time, the method requires efficient spatial verification
of the retrieved images.

The rest of the paper is structured as follows: first, the
components of BoW retrieval methods are reviewed in de-
tail in Section 2, then the proposed automatic tf-idf failure
recovery method is presented in Section 3. Finally, in Sec-
tion 4, the novel incremental spatial verification and context
growing are described and their performance is evaluated.
Section 5 concludes the paper.

2. Baseline Query Expansion

Image representation. For each image in the dataset, affine
invariant interest regions, called features, are detected. In
this paper, a variant of multi-scale Hessian regions-of-
interest [15] is used. For each feature, a 128-dimensional
SIFT [14] descriptor is computed. Feature descriptors are
vector quantized into visual words [23]. In this paper,
the approach of approximate k-means with 1-million visual
words was chosen from the many different vocabulary con-
struction methods, such as [18, 21, 9].

Images are represented as collections of features, where
each feature carries its visual appearance and spatial loca-
tion. The visual appearance is captured as a visual word,
while the spatial extent is encoded by an ellipse.

Bag of Words scoring. The search engines for particular
object search have been inspired by widely used text search
engines [2, 4]. The query and all the documents in the cor-
pus are represented as a sparse vector of visual word occur-
rences. The search then proceeds by calculating the similar-

ity between the query vector and each document vector. The
standard tf-idf weighting scheme [3] is used, which deem-
phasizes the contribution to the relevance score from com-
monly occurring, less discriminative words.

For computational speed, the engine stores word occur-
rences in an index that maps individual words to the docu-
ments where the words are contained. For sparse queries,
the use of an index, called inverted file, ensures that only
documents that contain query words are examined, leading
to a substantial speedup over the alternative of examining
every document vector. The scores for each document are
accumulated so that they are identical to the explicit com-
putation of the similarity.

Spatial verification. As shown in [21, 19], the results can
be significantly improved using the feature layout to ver-
ify the consistency of the retrieved images with the query
region. The initial result list is re-ranked by estimating
an affine transformation between the query image and re-
sult image. However, the spatial verification is significantly
more time consuming than the BoW scoring, and is per-
formed only on a shortlist of top scoring images. The short-
list is subsequently re-ranked based on the number of spa-
tially verified inliers.

Query expansion is one of the standard methods for im-
proving performance in text retrieval applications. A num-
ber of the highly ranked documents from the original query
are re-issued as a new query. In this way, additional relevant
terms can be added to the query.

In [7], the query expansion was introduced into the vi-
sual domain. A strong spatial constraint between the query
image and each result enables an accurate verification, re-
sulting in a suppression of false positives that typically ruin
text-based query expansion. These verified images can be
used to learn a probabilistic feature model to enable con-
trolled construction of expanded queries.

In [7], a number of query expansion strategies were pro-
posed. All of them follow a similar pattern: images in a
shortlist are spatially verified against query features, im-
ages with sufficient numbers of matches (inliers) are back-
projected by the estimated affine transformation into the
query region, and, finally, a new query is issued. The dif-
ferences in the proposed strategies are either in the number
of repeated applications of the process, or in the method of
feature selection.

The simplest well performing query expansion method is
called average query expansion. A new query is constructed
by averaging of document descriptors. This approach is the
quickest from all the suggested strategies in [7], and also
the most popular one [22, 19, 10]. We use the average query
expansion as the baseline method.
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3. Automatic tf-idf Failure Recovery in QE

The bag of words based scoring can be seen as a voting
scheme. The necessary conditions for the voting scheme to
work are that votes from features belonging to the query ob-
ject are coincident in relevant images, and that background
features randomly spread their votes among images in the
database.

However, it has been observed in [8, 6, 13] that the
assumption about noisy features does not always hold.
Groups of correlated features typically occur on the water
surface, on vegetation, images of text, faces, net-like struc-
tures, repetitive patterns, and statistical textures.

In the literature, the groups have been called cooc-
sets [6], or confusers [13]. In the case where confusers
appear in the query region, and are not related to the ob-
ject of interest, the BoW retrieval often fails to select rel-
evant images into the shortlist. This is a consequence of
correlated voting for images that contain the same type of
confusers, which suppresses the relative contribution of the
specific object.

The proposed method is orthogonal to previously pub-
lished approaches to QE, and can be used in conjunction
with them. Previously, the methods of query expansion
analysed results of the initial query to prepare a new query
that is a richer representation of the object of interest. In
contrast, the proposed approach tries to first obtain a cleaner
model of the object by eliminating irrelevant confuser fea-
tures.

We model the query (visual) words as a mixture of words
generated by three processes (topics): the object words O,
the confuser words C, and the random words R. The three
types of words, and their properties, are described in the
following paragraphs.

We address the retrieval of particular objects, defined as
a collection of features that preserves their appearance and
spatial layout over a range of imagining conditions such
as viewpoint change and scale change. The object words
w ∈WO are likely to be observed in images containing the
object of interest, i.e. P (w|O) is high, P (w|O) � P (w).
Moreover, the features associated with words, w ∈WO, ap-
pear at fixed coordinates with respect to the canonical frame
of the object, and thus allow for the geometric consistency
check. The confuser words w ∈ WC are defined as sets of
correlated words, satisfying P (w|C) � P (w). However,
confuser words are not significantly spatially consistent1.
Randomly occurring words, w ∈ WR, generated from spu-
rious features, and corrupted descriptors form the most fre-
quently occurring class. As reported in [24], object features
cover as few as 4% of the total features.

1We do not aim to solve a philosophical question regarding whether re-
curring objects, such as phone booths, are objects or confusers. According
to our model, appearance and spatially consistent features form objects.

We propose a extension, called automatic tf-idf failure
recovery, to the retrieval scheme. First, standard BoW re-
trieval with spatial verification is performed. The BoW
scoring is used to produce a shortlist of documents. The im-
ages in the shortlist are checked for spatial consistency with
the query features. The shortlist is significantly shorter than
the size of the database2. If relevant images are included in
the shortlist, they are identified by spatial verification and
re-ranking. Once relevant documents are retrieved, auto-
matic query expansion techniques are used to improve the
object model O. When a significant number of confuser
words C is present in the query, the whole shortlist can be
populated by images containing features generated from C,
and hence the spatial re-ranking cannot improve the search
results. We call this situation a tf-idf failure. Even though
the shortlist does not contain relevant images, it still con-
veys valuable information. A statistical model of the con-
fusers C present in the query can be learned from the images
in the shortlist, since a vast majority in the shortlist score
higher than the relevant images. Once the confuser model
C is known, its influence on the query is suppressed. There
are three issues that need to be addressed: (i) efficiently es-
timate the confuser model C, (ii) down-weight the effect of
the confusers to the query result, and (iii) decide if the re-
trieval tf-idf failure has arisen.
Ad (i) The distribution P (w|S) of visual words in the short-
list S is learned at virtually no cost during the tentative cor-
respondence construction in the spatial re-ranking phase.
Features whose visual words appear significantly more fre-
quently than in the database are deemed to be part to the
confuser model C:

WC = {w|P (w|S)/P (w) > r0} . (1)

The likelihood ratio threshold was r0 = 10 in our experi-
ments.
Ad (ii) There are many options to reduce the influence of
the estimated confusers C. We choose to simply remove
the confuser features from the query. This approach, while
seeming naive, has been shown to be effective and effi-
cient [6]. If a query expansion, average or any other type, is
used after the failure recovery, features that back-project to
regions occupied by the confusers are also removed. This
prevents back-projected confuser features from entering the
expanded query from the result images.
Ad (iii) To check whether a retrieval failure has arisen,

we compare the estimated quality ρ(Q) of results of two
queries: the original query, Q0, and the query after the re-
covery, QR. We estimate the quality of the results by the
inlier ratios in the top matching results. First, the accept-
able result images that each have an absolute and relative
non-random number of inliers are selected. The score of the

2In our experiments, a shortlist of 1000 documents is used.
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retrieval is then defined as the sum of inlier ratios over the
acceptable results. Formally, let SQ be a BoW shortlist of
query Q, TQ(X) be a number of tentative correspondences
between query Q and image X , and let IQ(X) be the num-
ber of geometrically consistent features between Q and X .
The acceptable result of Q is a set of images

AQ =

{
X|X∈SQ & IQ(X)>I0 &

IQ(X)

TQ(X)
>ε0

}
.

The quality of the shortlist result of query Q is defined as

ρ(Q) =
∑

X∈AQ

IQ(X)

TQ(X)
. (2)

To avoid wasted computation when improvement is un-
likely, the estimated quality of the original query Q0 is
thresholded. If ρ(Q0) > ρ0, then the hypothesis of the tf-idf
failure is directly rejected. In the experiments, the follow-
ing parameters were used: minimal acceptable number of
inliers I0 = 5, minimal acceptable inlier ratio ε0 = 0.2,
and the failure rejection threshold ρ0 = 5. The algorithm is
summarized in algorithm 1.

Algorithm 1 Automatic tf -idf failure recovery

Input: query features Q0

Output: 〈 query features, query results, feature mask 〉

Execute query Q0 including spatial verification
if ρ(Q0) > ρ0 (see eqn. 2)then

return 〈 Q0, results (Q0), empty 〉
end if
Learn a set of confuser words WC (eqn. 1)
QR = Q0 \WC
Execute query QR including spatial verification
if ρ(Q0) > ρ(QR) then

return 〈 return Q0, results (Q0), empty 〉
else

return 〈 return QR, results (QR), mask(WC) 〉
end if

Efficiency. The proposed method introduces no extra cost
for queries that return reasonable number of matching re-
sults (this is the case for almost all images in the standard
Oxford and Paris datasets, where the query bounding box
is tightly around the query building). For such queries the
result is also unaffected because the original query is ac-
cepted. For other queries, one extra BoW scoring and spa-
tial re-ranking step is executed. Since the new query is a
subset of the original query, this additional step is faster than
the original query.

3.1. Experimental Results

In this section, we compare the results of the confuser
model learned in the proposed automatic tf-idf failure recov-

AFR Cooc [6] Baseline
ÂP fFP ÂP fFP ÂP fFP

Stockholm 0.659 16 0.569 15 0.032 1
Dragon Wall 0.797 56 0.726 52 0.065 5
St Ignazio 0.945 17 0.737 14 0.105 2
Colloseum 0.762 514 0.136 85 0.018 13
Barcelona 0.895 17 0.789 15 0.053 1
St Mary 0.943 57 0.895 51 0.020 1
Vaticane 0.957 22 0.870 20 0.130 3
Bridge 0.583 4 0.716 5 0.143 1

Table 1. Quantitative comparison of the proposed method with [6]
and the baseline method on the Q8 dataset: Estimated average pre-
cision ÂP and the rank of the first false positive fFP.

ery step with results obtained by cooc-sets [6]. The quanti-
tative results on the Q8 dataset [6] embedded in a database
of over 5 million images are shown in Tab. 1. It is not feasi-
ble to obtain all true positives, so the average precision ÂP
is only an upper bound estimate. New positive results have
been discovered by the proposed method, and the ÂP values
are not directly comparable to values in [6].

Table 1 shows, that for most cases, the two methods give
comparable results. For the ‘Colloseum’ query, the pro-
posed approach gives significantly better results than results
obtained by the cooc-sets approach. This is because the
cooc-sets approach excludes object-relevant cooc-set fea-
tures as well as the confuser features, as opposed to the pro-
posed approach which correctly learns the confuser model.
Pros and Cons of the proposed method. Pros: No pre-
learning step is required, so the method is applicable to any
dataset and any vocabulary, and additionally, it does not re-
quire good training sets that generalize well, or retraining
for different vocabularies. The method is specific to the cur-
rent database and to the current query, so features for some
queries that are confusers can be useful for other queries.
Cons: The proposed method requires the execution of the
original query, while the cooc-set approach can filter con-
fuser features beforehand. In some queries, the confuser
features may represent significant proportion of the features
and thus the full query takes longer to execute.

4. Improving Blind Relevance Feedback in QE
In QE, spatial verification and re-ranking plays the role

of blind relevance feedback. Spatially consistent images re-
trieved with the original query are deemed “relevant”, sim-
ilarly to the images chosen by the user in manual relevance
feedback. The selected parts of “relevant” images then con-
tribute to the new, expanded query. The quality of the de-
cision on relevance significantly influences the success of
query expansion.

In this section, two improvements of spatial re-ranking
are presented. First, we introduce incremental spatial re-
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ranking (iSP), where the verification accounts for not just
spatial agreement with the initial query, but also agreement
with all previously verified images. Second, we show that
it is beneficial to “grow” the model of the object beyond the
boundaries of the initial query, and to examine the spatially
consistent neighbourhood of the query.

4.1. Incremental Spatial Re-ranking

In this section, an improvement of the spatial re-ranking
(SP) phase of the baseline method (see Section 2) is pro-
posed. As in the baseline method, the novel incremental
spatial re-ranking (iSP) starts with the shortlist S of images
ordered by the BoW score. The objective of iSP is to form
a statistical model of the query object.

Initially, the statistical model M0 includes only features
from the query. Next, images in the shortlist are considered
in the order given by BoW scoring. Each image X ∈ S is
geometrically matched against the current model M i. If the
image matching quality IMi(X) is greater than θ, the query
object model is updated, and M i+1 is formed.

The quality function IMi(.) is defined as the number of
geometrically consistent features with the same visual word
in imageX and modelM i. The threshold θ was set to 15 af-
ter extensive preliminary experiments. The updated model
M i+1 is the union of features in model M i and features in
imageX , back-projected using function f(.) onto the query
image, clipped by the query bounding box. The final rank-
ing of a shortlisted image is defined by the quality function.
The method is described in Algorithm 2.

Since the simplest quality measure described above per-
formed well, no alternatives, e.g. accounting for inlier ratio,
geometric overlap, or weights of matching features, were
evaluated.

Algorithm 2 Incremental spatial re-ranking

Input: query image Xq , shortlist S of images
Output: ranking R : S ↔ {1.. |S|}, expanded model Mn

of the object

M0 := Xq

Q := [], i := 0 \\ Q[k] records the number of inliers
for k := 1 to |S| do
X := S[k]
Q[k] := IMi(X)
if Q[k] > θ then
M i+1 :=M i ∪ f(X)
i := i+ 1

end if
end for
R := ranking of the images according toQ[k].

Figure 2. The process of context learning. Left column: the origi-
nal query. Other columns: feature patches back-projected into the
spatial context from 2, 5, 10 and 20 spatially verified images.

4.2. Outside the Query Boundaries: Incorporating
Spatial Context

The content outside the query region is not known at the
query time. It is clear that learning the query context must
be done by the “matching results to results” approach. The
process of the spatial context learning takes place either af-
ter spatial re-ranking, or, in the case of iSP, after each up-
date of the query object model. The latter has the advantage
that an image may be verified with the help of the context.
In this case, implementation of context growing is trivial.
As in iSP, features are back-projected to query image and
are added to the model regardless of whether they are in-
side or outside the query bounding-box. The extension of
the object model beyond the boundary of the original query
only requires relaxing this constraint.

At the beginning of the learning phase, the spatial con-
text is identified with the area inside the query boundary. A
feature added into the model that is not inside the context
is inactive until confirmed by feature(s) from another image
with the same visual word and similar geometry. Once a
feature is confirmed, it adds the neighbourhood around its
center to the context. All confirmed features in the context
are treated as active. The active features are considered the
same as those inside the bounding box, and are used in spa-
tial verifications, and, finally, in the query expansion. This
is efficiently implemented by spatial binning. The process
is summarized in Fig. 1 (bottom).

The progress of the spatial context growth for two
queries is visualized in Fig. 2. The learned model of the
query is shown as the mean of elliptic patches associated
with its features back-projected to the query. The query
bounding box is drawn as an orange rectangle. To save
space, the area not covered by the model, or equivalently,
the area not covered by a single feature, is cropped. Ex-
periment 2, summarized in Tab. 4, shows that including the
spatial context improves performance.
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Figure 3. Top row: Examples of the full (100%) bounding box
of some Oxford protocol queries (outer rectangle) and the query
bounding boxes reduced to 50% and 10%. Rows 2,3 and 4 depict
the context learned from the full, 50% and 10% bounding boxes
respectively (the orange rectangles). The yellow rectangle shows
the original bounding box. Note the ability of the iSP + ctx QE
to learn the context even from the smallest query. The method
failed on the CORNMARKET 10% (bottom row, middle) due to the
insufficient number of spatially verified images.

4.3. Experiments

Datasets and Evaluated Methods

The image retrieval methods proposed in Sections 4.1 and
4.2 were evaluated according to the standard protocol [21]
on the Oxford Buildings [21] and Paris datasets [22]. Ad-
ditionally, ≈100k confuser images of the 75 most pop-

ular Flickr tags are provided with the Oxford Buildings
dataset [21]. The datasets used in experiments are presented
in Tab. 2. For each of the Oxford and Paris datasets, the

Oxford 5k 5062 images of 11 Oxford landmarks

Oxford 105k Oxford 5k + 100k Flickr distractors

Paris 6k 6414 images of 11 Paris landmarks

Paris 106k Paris 6k + 100k Flickr distractors

Table 2. The datasets used in experiments.

evaluation protocol defines 55 queries, five for each land-
mark, with precise ground truth. The performance of all re-
trieval experiments is measured using the mean average pre-
cision (mAP), i.e. the area under the precision-recall curve
for the further details see [21].

An extended protocol over the Oxford and Paris datasets
is introduced. New, smaller query bounding boxes covering
10% to 90% of the original bounding box were introduced
to evaluate the image retrieval approaches in more challeng-
ing conditions. The cropped bounding boxes and the ground
truth are available through [1].

The proposed incremental spatial re-ranking and spatial
context growing methods are compared with the state-of-
the-art image retrieval approaches, see the list in Tab. 3. All
methods use, in experiments on the Oxford dataset, a 1M
visual word vocabulary trained on the Paris dataset and vice
versa.

1 SP BoW scoring, spatial re-ranking, no
query expansion, see Section 2

2 iSP BoW scoring, incremental spatial re-
ranking, no query expansion

3 SP + avg QE BoW scoring, spatial re-ranking, aver-
age query expansion, see Section 2

4 iSP + avg QE BoW scoring, incremental spatial re-
ranking, average query expansion

5 SP + ctx QE BoW scoring, spatial re-ranking, con-
text query expansion, see Section 4.2

6
iSP + ctx QE

BoW scoring, spatial re-ranking, incre-
mental spatial re-ranking with context
and context query expansion.

Table 3. Description of the state-of-the-art (rows 1 and 3) and the
proposed methods (rows 2,4,5 and 6).

Experiment 1. Evaluation of Incremental Spatial Re-
ranking

The experiment compares all image retrieval methods listed
in Tab. 3 on the Oxford and Paris datasets. We observe that
iSP outperforms SP in all cases; compare the left and right
columns of sections I, II and III of Tab. 4. The iSP im-
proves performance by approximately one half of the query
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expansion effect; compare columns I right, and II left. Since
only the shortlist is accessed, the performance improvement
is obtained at a negligible cost compared to issuing a sec-
ond query. This encourages the use of iSP instead of the
standard SP re-ranking. Additionally, the benefits of iSP
and query expansion are additive; compare columns I right
and II right. Finally, adding spatial context has negligible
effect on the Oxford dataset and improves performance on
the Paris dataset. This is due to the fact that on the Oxford
protocol, queries include entire objects, and there is little
gained by growing the spatial context.

I. w/o QE II. avg QE III. ctx QE
SP iSP SP iSP SP iSP

Oxford 5k 0.616 0.741 0.785 0.825 0.781 0.827
Oxford 105k 0.553 0.649 0.725 0.761 0.731 0.767
Paris 6k 0.617 0.679 0.720 0.772 0.753 0.805
Paris 106k 0.508 0.556 0.627 0.687 0.653 0.710

Table 4. Comparison of image retrieval methods with standard
(SP) and incremental spatial re-ranking (iSP).

Experiment 2. Evaluation of Spatial Context Expansion

Next we study the influence of incorporating the spatial con-
text of the query i.e. extending the model of the query out-
side its bounding box. The behaviour is demonstrated on
the same datasets by using a novel protocol.

As shown in experiment 1, the effect of context learning
is not significant in the case of the Oxford dataset. To model
a situation where only a detailed or partial view of the ob-
ject is available, the following protocol was devised: The
query bounding boxes were symmetrically reduced to 10%
of their area in nine steps, see Fig. 3. The maximum spatial
extent of the context was limited to an area 25× larger than
the reduced query bounding box.

The results (see Fig. 4) show that the performance of the
retrieval method using both spatial context and incremental
spatial re-ranking (iSP + ctx QE) drops below the state-
of-the-art (black dashed line in Fig. 4) method only after
reducing the bounding box area to 40%, (Fig. 4b,d), or even
to 20% (Fig. 4a,c) of the full query bounding box. One of
the reasons for the drop in performance is that to keep the
number of features in the model, and thus the speed of spa-
tial re-ranking reasonable, we limit the number of images
added to the model to ten, which is insufficient to recon-
struct the model to the quality of the original query. Also,
the results of initial queries on the standard datasets already
contain many of true positives, and even the standard query
expansion manages to retain a sufficient model of the ob-
ject.

Some examples of spatial contexts learned for some of
the Oxford protocol queries are shown in Fig. 3.

5. Conclusions
We have proposed three extensions of the query expan-

sion step in the BoW-based particular object and image re-
trieval. First, a method capable of preventing tf-idf failure
caused by the presence of confusers was introduced. Sec-
ond, the spatial verification and re-ranking step was im-
proved by incrementally building a statistical model of the
query object. Finally, we show that relevant spatial context
improves retrieval performance.

The proposed improvements of query expansion were
evaluated on established Paris and Oxford datasets ac-
cording to a standard protocol and state-of-the-art results
were achieved.

Finally, a new and more challenging protocol over stan-
dard datasets was introduced [1].
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Figure 4. The influence of decreasing the query bounding box size on image retrieval methods. The black dashed line is the performance
of the state-of-the-art [7] method with the original bounding box. The performance of the proposed iSP + ctx QE is superior to the state-
of-the-art method, if the query covers more than 20% of the bounding box on the Paris datasets, and more than 40% of the bounding box
on the Oxford datasets. The compared methods are listed in Tab. 3.
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