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Abstract. Two new methods for large scale image retrieval are pro-
posed, showing that the classical ranking of images based on similarity
addresses only one of possible user requirements. The novel retrieval
methods add zoom-in and zoom-out capabilities and answer the “What
is this?” and “Where is this?” questions.
The functionality is obtained by modifying the scoring and ranking
functions of a standard bag-of-words image retrieval pipeline. We show
the importance of the DAAT scoring and query expansion for recall of
zoomed images.
The proposed methods were tested on a standard large annotated im-
age dataset together with images of Sagrada Familia and 100000 image
confusers downloaded from Flickr. For completeness, we present in de-
tail components of image retrieval pipelines in state-of-the-art systems.
Finally, open problems related to zoom-in and zoom-out queries are dis-
cussed.

1 Introduction

A rapid increase in the size and ubiquity of shared image collections has mo-
tivated recent significant developments in image and specific-object retrieval.
Most object-retrieval methods take into account the requirements for efficient
content-based navigation and browsing of large-scale image collections.

Text search engines have provided the inspiration for the canonical approach
to visual retrieval [30]. The user provides a query against which the retrieval en-
gine ranks image relevance (or similarity). The performance of such an approach
is typically assessed by a measure inherited from the text retrieval community:
the average precision (AP). The state of the art and the standard components
of the visual retrieval pipeline are reviewed in Section 2.

We show, however, that a similarity or relevance ranking of image-query
results is not always suitable for browsing an image collection. This is demon-
strated in the Fig. 1 rows denoted “nn”, which depict the output of a query
in a large-scale image-retrieval system. All the results are similar to the origi-
nal image in scale and viewpoint, providing little additional information. The
phenomenon is an inherent problem of ranking by approaches using similarity.
The problem becomes more pronounced as the size of the collection increases,
since more images from similar viewpoints and of similar scales are present in



the dataset. On the other hand, the rows of Fig. 1 denoted “zoom in” show re-
gions of interest in the highest detected resolution. We advocate that “the most
detailed view” or, in, short “zoom-in”, is very probably the user intention after
bounding-box selection.
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Fig. 1. Comparison of outputs of the standard and novel approaches. Two queries dif-
fering only by bounding-box were issued on the image in the leftmost column. The
standard “most similar image” approach (nn, top rows) retrieves nearest neighbor
matches, which provide no detailed images local to the bounding box and produce
nearly identical results. The novel “most detailed view” approach or, zoom-in, maxi-
mizes the number of pixels inside the bounding box resulting in very different results
(zoom in, bottom rows).

In the paper we address two tasks the user might be interested in: “What is
this?” and “Where is this?”. The user expresses the first by selecting a bounding
box from an image or simply moving a pointer over an image and forward-
scrolling the mouse wheel. The expected result is a detailed image of the scene
selected by the bounding box or of the local region centered around the pointer.
The second expresses a desire for a broader contextual query.

In principle there are many tasks that might be of user interest: “What is
to the left or right of this?”; “On which backgrounds can this object be seen?”;
“Which objects can be seen on this background?”; “How does this object look
like in the dark?”. To demonstrate the concept we focus exclusively on the zoom-
in and zoom-out tasks 2.



zoom out
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Fig. 2. Comparison of outputs of the standard and the proposed approach. The
standard “most similar image” approach (nn, top rows) retrieves nearest neighbour
matches, while the “context view” approach answers the question “Where is this?” by
maximizing the scene content surrounding the bounding box, in this case, the whole
query image (zoom out, bottom rows).

2 Standard components and state-of-the-art methods in
large scale image retrieval

In this section we review three popular approaches that each use vector represen-
tations for images. Additionally, we present image retrieval approaches derived
from techniques used in text search as well as standard methods for increasing
precision and recall after scoring in the index file.

2.1 The bag of words image representation

One of the most popular image representations is the bag of words (BoW).
Images are represented as collections of local features. A local feature has its
visual appearance represented by a visual word and its spatial extent defined by
a point and an ellipse.

Features, typically affine covariant regions, are detected for each image in
the dataset. The most frequently used detectors in image retrieval engines are
the Harris-affine [19, 29], Hessian-affine [19] and MSER [18], which have different
detection characteristics, but collectively represent the state-of-the art. A com-
prehensive performance survey of features detectors is given by Mikolajczyk et
al. [20], which confirms the high performance of the above listed detectors.

Detected interest regions are described by a feature descriptor. The SIFT
descriptor [17], which describes an interest region by a point in a 128-dimensional
space, is ubiquitous in state-of-the-art systems. Many modifications have been
proposed in the literature, including two effective and popular variants: rootSIFT
[2] and SURF [5].

Feature descriptors are vector quantized into visual words [30] creating a
visual vocabulary. Many approaches have been studied in the literature, with
modifications addressing different goals and constraints.

The canonical vocabulary construction method is the unsupervised k-means
clustering. The parameter k denotes the number of visual words in the vocab-
ulary. The choice of k varies: from k ≈ 103, usually suitable for classification
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Fig. 3. Visualization of the bag of word image representation computation with geom-
etry compression. Courtesy of Michal Perd’och.

tasks, up to k ≈ 107 [21]. To efficiently construct large vocabularies, Nister et al.
[23] proposed the use of a hierarchical vocabulary tree and Philbin et al. [26] use
approximate nearest neighbour. Following the approach of Perdoch et al. [25],
spatial information can be also compressed using unsupervised clustering with-
out significant loss of precision. The process of image description is visualized in
Figure 3.

2.2 Image representation with VLAD

The vector of locally aggregated descriptors (VLAD) [15] is another successful
image representation method. It combines the advantages of the bag of words
and the Fisher kernel [12]. As in the BoW representation, local features are de-
tected and described. The vocabulary is created with k-means, but, unlike the
BoW method, only a small number of visual words k are used. Jegou et al. [15]
show that good results are achieved for k ∈ [16, 256] visual words. Visual words
are constructed by finding k cluster centers as before, but the descriptor assigned
to a cluster center is computed as a sum of signed differences between the clus-
ter center and its nearest feature descriptors, resulting in a k × d dimensional
vector (d is the dimension of the local descriptor, e.g. 128 for SIFT). Product
quantization [14] is used to construct the final quantized descriptor creating a
compact representation that fits into 20 bytes.



2.3 GIST descriptor

A different approach to image representation is to create a global descriptor that
captures the spatial layout and spatial relationships between regions or blobs of
similar size, and the arrangement of basic geometric forms. One example is GIST,
proposed by Oliva and Torralba [24]. A single GIST descriptor is used to rep-
resent an image, which results in a small memory footprint. The representation
prevents partial matching of the image, it is sensitive to occlusion and there are
no keypoints that can be used for spatial verification.

2.4 Image retrieval

The nearest neighbor (NN) search for similar images is slow for large datasets,
even if it uses sophisticated data structures avoiding exhaustively examination
of the image database. Approximate NN search offers a big improvement.

Text search engines [1, 4] face similar scalability problems for document re-
trieval, and the computer vision community has looked there for inspiration. In
particular, image database indexing by the inverted file data structure leads to a
dramatic speedup over the nearest neighbor search [30]. Inverted files map visual
words to documents containing the words. The inverted file serves as in index
into the database: upon a query, a subset of matching documents is returned,
i.e., those that contain the visual words of the query. The document ranking pro-
ceeds by calculating the similarity between the query vector and the matching
document vectors. For sparse queries, the use of an inverted file ensures that only
documents that contain query words are examined, which leads to a substantial
speedup over the alternative of examining every document vector.

Efficient computation of the relevance of an image to a query is achieved
by traversing the inverted file and reading the posting lists associated with the
visual words of the query. The posting list (one row of the inverted file) associated
with a visual word W is the list of image identifiers that contain visual word
W . The standard tf-idf weighting scheme [3], also adopted from the document
search community, is used to weight the document’s relevance by de-emphasizing
commonly occurring, less discriminative words.

Application of this approach is straightforward for sparse BoW vectors. For
VLAD, similar speedup is achieved by combining the inverted file with asym-
metric distance computation (IVFADC) proposed by Jegou et al. [14].

2.5 Spatial verification and query expansion

As shown in [26, 25], retrieval results are significantly improved by using the
locations of features to verify their spatial consistency with the query region.
This is achieved by a fast and robust hypothesize-and-test procedure that esti-
mates an affine transformation between the query region and the target image.
The RANSAC algorithm with local optimization [8] is widely used for spatial
verification in state-of-the-art retrieval systems.



A caveat is that spatial verification is significantly more time consuming than
BoW scoring. Thus it is performed only on the shortlist consisting of top scoring
images. Furthermore, Chum et al. [9] show that if the model of the query (bag of
words with feature geometries) is updated with newly spatially verified images
by adding their visual words and geometries during the spatial verification, the
probability of verifying other related images increases. Verified images in the
shortlist are subsequently re-ranked.
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Fig. 4. Visualization of image retrieval with spatial verification for the bag of words
representation. Courtesy of Michal Perd’och.

Chum et al. [10] proposed a query expansion (QE) method – another tech-
nique inspired by text retrieval [6, 28] – to image retrieval and demonstrated
impressive gains to recall. In QE, visual words from highly ranked images are
composed in a new, expanded query. Unlike in text retrieval, features come with
spatial information, typically keypoints, so geometric constraints and can be
checked with spatial verification to ensure that the expanded query does not
include visual words from a false positive image.

Chum et al. [9] added spatial context to queries by incorporating matching
features that locally surround the initial query boundary into the query expan-
sion. A latent model of the context of the query object is constructed by exploit-
ing features surrounding the bounding-boxes of images verified by incremental
spatial verification. A consistent context is learned and features belonging to the
context can aid the expanded query, thus further improving recall. The process
of image retrieval for BoW representation is summarized in Figure 4.



3 Overview of the zooming algorithm

The zooming algorithm, which implements the novel “What is this?” and “Where
is this?” functionalities, is based on the standard bag of words image retrieval
method. The distinction is in the choice of ranking function. Instead of ordering
images according to similarity, it is designed to address new goals: maximizing
detail or maximizing content.

To encourage a scale change, the ranking function requires knowledge of the
geometric transformation between the query and the shortlisted images. The
transformation is estimated by the RANSAC algorithm. The ranking function re-
orders only verified images, i.e., the images for which a geometric transformation
was found, preferring zoomed-in or zoomed-out images.

To increase recall, scoring with the inverted file is weighted to account for
scale change. To achieve this, compressed geometric information of the features
is stored with their visual words and the document at a time (DAAT) scoring [31]
is used to process the posting lists. Using DAAT, the geometry of the features is
examined concurrently with computation of image scores, and the standard tf-idf
score is re-weighted according to the scale change of features and user intention.

Query expansion plays an important role in the method, and the incremental
spatial verification and context learning as proposed in [9] is used. In our ex-
periments, good results were achieved when images selected for query expansion
were chosen with the same ranking function as used for final ranking. Option-
ally, the query expansion step can be repeatedly issued until the requested zoom
is found or the system fails to retrieve new, zoomed-in images. The method is
summarized in Algorithm 1.

Algorithm 1 Overview of the zooming algorithm. Note that step 5 represents
a trade-off between the query time and output quality.

Input: Bag-of-words of the query image
Output: Ranked list of images

1. Fetch posting lists for query visual words and score in DAAT order for
each scale band separately.

2. Re-weight scores in scale bands to prefer desired change in scale and
create a shortlist.

3. Spatially verify images in the shortlist, incrementally building an ex-
panded query.

4. Rank images according to the desired goal (zoom-in/zoom-out)
5. Return the result or form the expanded query with context learning and

goto 1



3.1 Ranking functions

Many different tasks might be addressed with specific ranking functions. There
are several options for zooming which can be useful for different tasks.

Zoom in. The simple option of ordering images according to the determinant of
the geometric transformation between the query and the database image returns
maximally zoomed images first. However, the top ranked images often cover only
a small part of the scene selected by the bounding box. This ranking can be still
useful if the images are going to be further processed, i.e., compiled to a super-
resolution image, used in a new expanded query, etc..

We suggest that a user who browses the database expects to see the whole
scene in the retrieved image. However, simply restricting the results to images
that contain the whole bounding box often rejects significantly zoomed images
with only a small fraction of the scene missing. Such images might be easily ac-
cepted by the user who usually does not want to be very precise while specifying
the query bounding box.

A good trade-off between the zoom-in and a bounding box coverage was
observed for the following ranking function:

zin =

√
Ar

Aq
,

where Ar is the area inside the bounding box within the retrieved image and Aq

is the area inside the query bounding box. The square root plays no role in the
raking. It allows interpreting zin as an estimate of the scaling of lengths (not the
areas), which is consistent with zoom factor specification.

Zoom out. In this case, the naive “determinant of transformation” solution re-
trieves just images with similar scene content at lower resolution, providing no
additional information.

To achieve the “where is this” or zoom-out goal, the user intuitively expects
to see a large context of the query image. For this purpose, we propose the
ranking function

zout =

√
Ar

Aw
,

where Ar is the area inside the bounding box and Aw is the area of the whole
retrieved image. In this case, we add the constraint that the whole bounding box
must be visible in the result.

4 Experiments

A search engine was built for an expanded Oxford dataset (5063 images of Oxford
landmarks) [26], which was augmented with 100000 confuser images and 15000
landmark images. The Oxford dataset, as well as other standard datasets, is not



very suitable for demonstrating the zoom capabilities since it does not contain
significantly zoomed-in or zoomed-out images. For this reason we added 15000
images downloaded from flickr containing the tag Sagrada Familia. This favorite
landmark is very well covered with photos from the distance up to the greatest
details on the Sagrada Familia facade.

4.1 Design choices.

Following most of the recent work on image retrieval, multi-scale Hessian-affine
features were used for feature detection. As we are interested in zooming, a
global descriptor cannot be used, because it does not allow parts-based search
of images.

Features were described by the 128-dimensional SIFT descriptor. The stan-
dard K-means algorithm with approximate nearest neighbor [22] is used to learn
a vocabulary with one million visual words. The vocabulary is learned on the
independent standard Paris dataset [27] (6412 images).

As in [25], feature geometries are compressed. Four bits are allocated for scale
and 12 bits for shape compression. The compressed geometries are stored in the
inverted file along with the visual words for fast access during DAAT scoring.

After scoring using the inverted file, a shortlist of the top 100 images is
created. Incremental spatial verification is used and images are reordered with
a chosen rank function. Optionally, the context of the query is learned and an
expanded query is issued.

4.2 Evaluation protocol

To our knowledge there is no standard dataset with an evaluation protocol suit-
able for testing zooming capabilities. To demonstrate the method, we chose 2
queries from Sagrada Familia and 9 queries from the Oxford dataset. The queries
and the top results retrieved with the zoom-in method are shown in Figure 5.
Note that even if the Oxford dataset is not well covered with detailed views of
landmarks, the user can, for instance, use the zoom-in to view architectural de-
tail (Sagrada), read street names (Cornmarket), boards (Bodleian) or virtually
navigate through the scene (going through the archway at Christ Church).

Table 1 shows, for 11 selected queries, the zoom-in result in top ranked im-
age and an average zoom in top 5 retrieved images. The baseline nearest neigh-
bour (nn) search with context based query expansion (QE) is compared with
three zoom-in methods. First includes only ranking function (rank), second uti-
lizes DAAT scoring in inverted file (DAAT), and the last adds query expansion
(DAAT+QE).

5 Conclusions

We have presented two new methods for large scale image retrieval demonstrat-
ing that the classical ranking of the images based on similarity is only one of



Sagrada - Horse (9.54×) Sagrada - Jesus (6.63×)

All Souls (1.09×) Ashmolean (1.89×)

Balliol (2.02×) Bodleian (3.20×)

Christ Church (5.44×) Cornmarket (3.93×)

Hertford (1.65×) Pitt Rivers (1.57×)

Radcliffe Camera (3.95×)

Fig. 5. Query images (on the left in each column) and the top results using the zoom-in
method with DAAT scoring and query expansion. The effective zoom is in parentheses.



top 1 top 5 average
nn zoom-in nn zoom-in

query QE rank DAAT DAAT+QE QE rank DAAT DAAT+QE

Sagrada - Horse 0.98 1.82 4.09 9.54 1.16 1.41 2.04 8.03
Sagrada - Jesus 0.86 2.75 2.75 6.63 1.22 1.22 1.87 6.00
All Souls 1.03 2.31 2.31 1.09 1.03 1.41 1.50 1.08
Ashmolean 1.43 1.43 1.43 1.89 1.28 1.28 0.77 1.45
Balliol 0.95 2.02 2.02 2.02 1.00 1.00 0.61 0.81
Bodleian 0.92 1.82 2.85 3.20 1.10 1.08 1.20 2.11
Christ Church 1.77 1.77 5.44 5.44 1.52 1.52 2.57 1.77
Cornmarket 1.57 3.93 3.93 3.93 1.39 1.97 1.97 1.97
Hertford 1.28 1.65 1.65 1.65 1.02 1.35 1.35 1.35
Pitt Rivers 1.30 1.36 1.57 1.57 1.30 1.22 1.10 1.10
Radcliffe Camera 1.29 3.95 3.95 3.95 1.23 2.03 2.04 2.35

Table 1. Comparison of the standard method (nn) and zoom-in. We report the zoom
of the first ranked image (top 1), and the average zoom of the top five images (top 5
average). Four methods were compared: 1. the baseline nearest neighbor search with
query expansion (nn, QE), 2. Zoom-in only by shortlist re-ranking (rank), 3. DAAT
scoring and re-rank (DAAT), 4. DAAT scoring, ranking function and query expansion
(DAAT+QE). In all four cases, incremental spatial verification was used.

many retrieval problems. In very large databases, the standard retrieval of the
most similar images is unlikely to be useful as in many cases it returns just near
duplicates.

The newly proposed retrieval methods add zooming capabilities and answer
the “What is this?” and “Where is this?” questions. The functionality has been
achieved by modifying two steps of the standard bag-of-words retrieval pipeline,
namely the scoring and ranking functions.

We show the importance of the DAAT scoring and query expansion for re-
call of zoomed images. The proposed methods were tested on a standard large
annotated image dataset together with images of Sagrada Familia and 100000
image confusers downloaded from Flickr.

Open problems. Ordering images according to criteria other than simi-
larity aggravates the problem of false positives. In a standard retrieval system,
images are spatially verified and re-ordered according to the number of veri-
fied correspondences – the inliers of a geometric transformation obtained by the
RANSAC algorithm. Irrelevant but highly similar (in the bag of words sense)
images usually have only a small number of incidentally geometrically verified
correspondences and are ranked after the true positive images. However, in the
case of zooming, an incorrectly verified image often score as the zoomed version
of the query. Such false positives are immediately recognized by the user. More-
over, the false positives are used in the subsequent query expansion which may
lead to a complete failure of the system, i.e. to an irrelevant response to the
query.



Retrieval with zooming is also sensitive to the presence of repetitive struc-
tures [16, 11, 32]. Zooming in on man-made objects very often reveals small repet-
itive patterns – textures on facades of building, bricks, fences, bars etc., which
can often cause failure of spatial verification and consequently of query expan-
sion. Attention to burstiness [13], co-occurring features [7] and automatic failure
recovery [9] alleviates the problem.
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